
In presenting this thesis in partial fulfillment of the requirements for an advanced
degree at Idaho State University, I agree that the Library shall make it freely available for
inspection. I further state that permission for extensive copying of my thesis for scholarly
purposes may be granted by the Dean of the Graduate School, Dean of my academic division,
or by the University Librarian. It is understood that any copying or publication of this thesis
for financial gain shall not be allowed without my written permission.

Signature

Date

Imposing Structure on Generated Sequences: Constrained Hidden

Markov Processes

by

Porter W. Glines

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in the Department of Computer Science

Idaho State University

May 2022

To the Graduate Faculty:

The members of the committee appointed to examine the thesis of Porter W. Glines
find it satisfactory and recommend that it be accepted.

Paul M. Bodily,
Major Advisor

Leslie Kerby,
Committee Member

Irene van Woerden,
Graduate Faculty Representative

Table of Contents

List of Figures vii

List of Tables xv

Abstract xvi

1 Introduction 1

2 Related Work 4

2.1 Broad Research Area Overview . 4

2.2 Constrained Models Research-Related Work 6

3 “She Offered No Argument”: Constrained Probabilistic Modeling for

Mnemonic Device Generation 9

3.1 Abstract . 9

3.2 Introduction . 10

3.3 Parallels Between Computational Creativity and Constrained Probabilistic

Modeling . 12

3.3.1 Quality Assurance . 16

3.4 Non-Homogeneous Markov Models . 17

3.5 NhMMonic . 18

3.6 Methods . 20

3.7 Results . 20

3.8 Discussion . 23

iv

3.9 Acknowledgements . 26

4 A Leap of Creativity: From Systems that Generalize to Systems that Filter 27

4.1 Introduction . 28

4.2 Methods . 30

4.3 Results . 33

4.4 Discussion and Conclusion . 35

5 Probabilistic Generation of Sequences Under Constraints 39

5.1 Introduction . 39

5.2 Related Work . 41

5.3 Methods . 43

5.4 Applications . 52

5.5 Conclusion . 55

6 Constrained Hidden Markov Processes for Sequence Generation 56

6.1 Introduction . 56

6.2 Related Works . 58

6.3 Problem Statement . 59

6.4 Construction of the Constrained Model H̃ 62

6.4.1 Extract Matrices from H . 62

6.4.2 Applying Constraints . 63

6.4.3 Enforcing Arc-consistency . 65

6.4.4 Normalization . 67

6.4.5 Proof of Properties (I) and (II) . 69

6.5 Time complexity . 71

6.5.1 Proof . 71

6.5.2 Experimental Validation . 72

6.6 Results for Natural Language Sequence Generation 74

v

6.7 Results for Musical Sequence Generation . 76

6.8 Conclusion . 79

7 Conclusion 81

References 83

vi

List of Figures

2.1 The anticipation-RNN architecture as depicted by Gaëtan Hadjeres and Frank

Nielsen [24] where s1, . . . , sN sequence symbols are predicted given c1, . . . , cN

constraint symbols and the previous sequence symbols s0, . . . , sN−1. For each

RNN cell, int is its input, outt+1 its output, and ht its hidden state at time t. 7

3.1 The Wundt curve models value as the sum of two nonlinear functions: Hx

which rewards novelty, and Nx which punishes novelty beyond some threshold

of typicality, from Saunders and Gero [58]. 12

3.2 In many forms of creativity, the set of domain artefacts D exists as a structured

subset of a larger domain UD of all artefacts that can be represented using

the same language as is used to describe artefacts in D. Due to the inherent

difficulty of defining belonging to a particular domain for a general audience,

the set of artefacts included in D is in reality somewhat vague. In practice

creative systems define a set that approximates D which defines the expressive

range of the model. The extent to which this set includes or excludes artefacts

that are commonly accepted as belonging to D controls how conservative or

liberal the model will be in judging whether or not an artefact is representative

of the domain. 14

vii

3.3 The NhMMonic model. (a) A mnemonic task (i.e., the four stages of enlight-

enment) to be memorized. (b) A non-homogeneous Markov model built to

solve the mnemonic task. M1, M2, and M3 represent Markov constraints; C1,

C2, C3, and C4 denote unary constraints derived from the task. Nodes marked

with white X’s are removed due to violation of unary constraints while the

node marked with a grey X is removed to keep the model arc consistent. Edge

labels indicate transition probabilities. (c) A possible mnemonic generated by

the model. 19

3.4 Survey Results. Average ratings from 320 evaluations across four metrics for

four different mnemonic device generation algorithms. Error bars are standard

deviation. The ease of memorization of mnemonics from the NHMM-2 model

appears to be associated with improved flow with respect to other models. . 22

3.5 Impact of Task Length. As the length of the memorization task increases, the

effectiveness of mnemonic devices decreases across all models, but at a much

lesser rate for the NHMM-1 and NHMM-2 models. We hypothesize that this

is owing to the sustained grammatical and semantic flow that these models

achieve from the constrained Markov model. 23

3.6 Top-rated mnemonics generated by NhMMonic. Seven mnemonic device tasks

are shown. Each task consists of a description (bold and underlined) followed by

a list of words requiring a mnemonic device. Below each task is the NhMMonic-

generated mnemonic device that received the highest memorization score (with

the exact model and score given in parentheses). 24

4.1 Ventura’s spectrum of creative systems provides a means by which to measure

the progress of a system towards becoming creative [64]. Characterizing

challenges and solutions that are specific to each level in the spectrum helps to

actualize the spectrum into becoming a guide for building more creative systems. 28

viii

4.2 A high-level schematic of a constrained hidden Markov process (CHiMP) of

length 4 constrained so that the last word is “red” and the first word rhymes

with “red”. Each column represents a position in the sequence to be generated.

Each node represents a hidden state (i.e., part-of-speech) and a probability

distribution for the observed states (i.e., words) that can be generated from that

hidden state. By pruning observed states that are disallowed by constraints

and then adjusting probabilities to maintain arc-consistency, the resulting

model generates constraint-satisfying solutions with probability relative to

the original probability distribution [22]. Hidden states pruned directly from

applying constraints are indicated by dark grey nodes and states pruned during

arc-consistency are indicated by light grey nodes. 31

4.3 The application of filters on two hypothetical models (A and B) demonstrates

the requirement for larger solution spaces (increased generalization) in order

to endure filtering with a usable solution space. Model B has a usable solution

space after filtering; thus the model has moved further along in the spectrum

from generalization to filtration. 33

4.4 Example results from generating 6-length tongue twisters (i.e., alliterative

constraints) from both the CoMP and CHiMP models. Both models were

trained on 10K sentences. Results are chosen from a randomly selected subset

of 40 sequences from each model. The quality of tongue twisters is roughly

equivalent between both models (both poor), but the CHiMP model is capable

of generating exponentially more solutions. This suggests that increasing

the Markov order in the CHiMP model (as an example of more stringent

constraints) will have far less deleterious affects on the solution space as

compared to a similar increase in the CoMP model. 35

ix

4.5 The effects of sequence length on the number of total solutions generated

by each model with a fixed training set size of 300 sentences. Both models

are constrained such that each word in a sequence starts with the same

letter; counts of total solutions are averaged over 26 runs (each run using a

different letter from the English alphabet). We see that as the sequence length

increases, total solutions for the CHiMP model increases exponentially (given

the logarithmic scale) whereas the CoMP model stagnates. 36

4.6 The effects of training corpus size (number of training sentences) on the number

of total solutions generated by each model with a fixed sequence length of 3.

Both models are constrained such that each word in a sequence starts with

the same letter; counts of total solutions are averaged over 26 runs (each run

using a different letter from the English alphabet). The total solutions of both

models increase in an almost parallel way; however, at 10K training sentences,

CHiMP well exceeds 100M total solutions which contrasts CoMP at 1000 total

solutions. 36

5.1 A constrained Markov process (CoMP) with constraints requiring the first

token rhyme with red and the last token be red. Pruned states and updated

transitions are the result of applying constraints and then enforcing arc-

consistency. 49

x

5.2 A high-level schematic of a constrained hidden Markov process (CHiMP) of

length 4 constrained so that the last word is “red” and the first word rhymes

with “red”. Each column represents a position in the sequence to be generated.

Each node represents a hidden state (i.e., part-of-speech) and a probability

distribution for the observed states (i.e., words) that can be generated from that

hidden state. By pruning observed states that are disallowed by constraints

and then adjusting probabilities to maintain arc-consistency, the resulting

model generates constraint-satisfying solutions with probability relative to the

original probability distribution. Hidden states pruned directly from applying

constraints are indicated by dark grey nodes and states pruned during arc-

consistency are indicated by light grey nodes. 51

5.3 The effects of sequence length (and consequently number of constraints) on

generalizability (i.e., number of unique sequences out of 10k sampled solutions)

for a fixed random training set of 100 sentences. Each model is constrained

such that words start with the same letter, and counts are averaged over

26 runs (a different letter constraint for each run). The added constraints

from increasing sequence length have a compounding limiting effect in the

CoMP model, whereas the abstraction of the CHiMP model serves to decouple

constraints to avoid bottlenecks. 53

xi

5.4 The effects of training corpus size on generalizability of the CHiMP (blue)

and CoMP (red) models. Generalizability is measured as number of unique

sequences out of 100k sampled solutions. Each model is constrained such that

words start with the same letter, and counts are averaged over 26 runs (a

different letter constraint for each run). Shades show the effects of varying the

sequence length (and consequently the number of constraints) on generalizabil-

ity. The CHiMP model consistently generates more unique satisfying solutions

than the CoMP model and is relatively immune to the effects of training set

size or number of constraints. 54

6.1 A high-level schematic of a constrained hidden Markov process (CHiMP) of

length 4 constrained so that the last word is “red” and the first word rhymes

with “red”. Each column represents a position in the sequence to be generated.

Each node represents a hidden state (i.e., part-of-speech) and a probability

distribution for the observed states (i.e., words) that can be generated from that

hidden state. By pruning observed states that are disallowed by constraints

and then adjusting probabilities to maintain arc-consistency, the resulting

model generates constraint-satisfying solutions with probability relative to the

original probability distribution. Hidden states pruned directly from applying

constraints are indicated by dark grey nodes and states pruned during arc-

consistency are indicated by light grey nodes. 70

6.2 Experimental results that show the performance of CHiMP as a function of

the size of the alphabet n. The solid line is the time to create (train) the

model and shows the performance to be a quadratic function of n. The dashed

line grows linearly with n. 73

6.3 Experimental results that show the performance of CHiMP as a function of the

length of the sequence L. The time to create (train) the model and generate a

sequence both grow linearly with L. 74

xii

6.4 The effects of training corpus size on generalizability of the CHiMP (blue)

and CoMP (red) models. Generalizability is measured as number of unique

sequences out of 100k sampled solutions. Each model is constrained such that

words start with the same letter, and counts are averaged over 26 runs (a

different letter constraint for each run). Shades show the effects of varying the

sequence length (and consequently the number of constraints) on generalizabil-

ity. The CHiMP model consistently generates more unique satisfying solutions

than the CoMP model and is relatively immune to the effects of training set

size or number of constraints. 75

6.5 The effects of sequence length on the number of total solutions generated

by each model with a fixed training set size of 300 sentences. Both models

are constrained such that each word in a sequence starts with the same

letter; counts of total solutions are averaged over 26 runs (each run using a

different letter from the English alphabet). We see that as the sequence length

increases, total solutions for the CHiMP model increases exponentially (given

the logarithmic scale) whereas the CoMP model stagnates. 76

6.6 An example of a sequence generated by CHiMP with four note voices in the

style of a Johann Sebastian Bach chorale. Green notes indicate the set of

constraints used to generate the sequence. The constraints are to exactly

match the beginning and end of the first five measures of “Wer nur den lieben

Gott läßt walten”. 77

xiii

6.7 Survey results using Amazon’s Mechanical Turks service yielded 2,400 responses

(600 per model) and are visualized in a Likert chart. Participants were asked to

rate a 12-second musical phrase on how cohesive (natural-sounding) the phrase

sounds. The responses one to five correspond to: “very poor - Completely

uncohesive music”, “poor - mostly uncohesive music”, “fair - equally cohesive

and uncohesive music”, “good - mostly cohesive music”, and “excellent -

completely cohesive music”. For CHiMP trained with a Markov order of three,

73% of responses were four or five and only 4% of responses rated the music

poorly on cohesiveness (one or two). The music phrases generated by CHiMP

with Markov orders of three and six are rated similarly to CoMP whereas the

phrases from the anticipation-RNN are rated slightly lower on cohesiveness. . 78

xiv

List of Tables

6.1 Mann-Whitney U test p-values for cohesiveness survey result groups. 79

xv

Imposing Structure on Generated Sequences: Constrained Hidden
Markov Processes

Thesis Abstract – Idaho State University (2022)

Markov models and neural networks are widely used in systems tasked with generating

natural and meaningful sequences. Generating high-quality sequences often requires the

system to impose structure on the sequences via user-defined control constraints. These

models are typically not compatible with control constraints. Work has been done to combine

non-hidden Markov models with constraints; however, this approach has the problem of

diminishing solution space sizes for increasing Markov orders or constraint complexity.

For neural networks, the anticipation-Recurrent Neural Network (anticipation-RNN) allows

control constraints but is limited in what kind of constraints work effectively.

We propose an efficient method to apply control constraints to a hidden Markov model

that, like the non-hidden variant, 1) guarantees sequences generated satisfy constraints and

2) the statistical distribution of the constrained model is the same as the original model.

The proposed model satisfies the control constraint requirement and avoids the problem of

diminishing solution space sizes afforded by the abstraction introduced by the hidden states.

Keywords: Sequence Generation, Markov Models, Constraint Satisfaction, Constrained
Hidden Markov Process, Anticipation-RNN

xvi

Chapter 1

Introduction

Sequential content generation is a common task for A.I. systems. Systems generate

musical sequences for interactive song creation [41], natural language sentences for counselor

chatbots [39], narrative content for storytelling [50], etc. These systems are found in the

context of consumer software, academic projects, and computational creativity. Conceptual-

izations used in these systems range from Markovian models [41] to Deep Learning models

[24]. This thesis presents a novel Markovian model: a Constrained Hidden Markov Process

(CHiMP). This new model will be compared against a related Markovian model and a neural

network based model to demonstrate its abilities.

Digital media is ubiquitous. Personalized content generation systems have the potential

to help people create meaningful content for themselves and for others. Creative content

generation systems are being investigated in a therapeutic context where patients can gain

therapeutic value out of expressing themselves with the help of a creative system [9]. These

systems can be useful for those looking to generate non-copyrighted music (e.g., video makers)

or plagiarism free text to fill articles [44].

While digital media comes in many forms, this thesis focuses on sequential content

such as music and natural language text. Sequential content often has domain-specific

structure that is important to the perceived cohesiveness or quality of a generated sequence.

For example, in natural language sentences, the underlying subject-verb-object agreement is

important to having a cohesive sentence [26]. In music, the presence of motifs can elevate a

musical piece to be something more interesting [1, 38].

1

In some content generation systems, it is desirable for the model to be user-steerable

such that a user can influence generated sequences by defining a set of constraints. A user

might desire to steer a music generation system to follow a loosely “happy sounding” pitch

contour or end musical phrases with a specific rhythm. User-steerable models are particularly

desirable to co-creative systems where a creative A.I. system is supporting and building off of

inputs of a human user.

The relation that structure has with cohesiveness and the desire for user-steerable

models motivates the problem this thesis aims to address:

Problem: Imposing structure onto generated sequences where current models can adhere

to constraints and maintain sequence cohesiveness, but have diminishing solution space

sizes for restrictive constraints.

When comparing solutions to this problem, it will be important to measure the trade-offs that

imposing structure will have on model generalizing power and generated sequence cohesiveness.

Model generalizing power can be greatly diminished when structure is imposed [21]; which

is to say that as more constraints are applied to sequences, the smaller the solution space

becomes. One way to combat diminishing solution space sizes is to introduce an element

of abstraction into the model [21]. In our model, CHiMP, the element of abstraction is the

hidden nodes in a hidden Markov process which are absent in a non-hidden Markov process.

Introducing an element of abstraction into a model potentially introduces negative effects on

the cohesiveness of generated sequences. However, we find that CHiMP does not generate

sequences that are significantly less cohesive for the domain of music.

In comparing models that impose structure onto generated sequences, we measure how

the imposition of structure effects the models generalizing power by measuring the percent

of unique generated sequences from many samplings of the model and generated sequence

cohesiveness through conducting an Institutional Review Board (IRB) approved survey.

The goal of this thesis is to evaluate how CHiMP compares against other sequence

generation models in generating musical sequences that A) adhere to desired unary structural

2

constraints, B) maintain semantic cohesiveness, and C) have adequate expressive/generalizing

power. This thesis also evaluates CHiMP in regards to its theoretical and experimental time

complexities to train and generate sequences.

The remainder of this thesis, besides Chapter 2, is a compendium of published or soon

to be published papers. Chapter 2 discusses related work and background areas. Chapter 3

presents a paper published at ICCC 2019 that applies the constrained Markov process (CoMP)

to a generative problem and motivates the designing of CHiMP. Chapter 4 presents a paper

presented at ICCC 2020 that motivates the need for models like CHiMP in the context of

computational creativity. Chapter 5 presents a paper presented at i-ETC 2020 that initially

describes CHiMP. Chapter 6 presents an article that fully describes CHiMP, including the

methods for constructing the model, time complexity analysis, and experimental results.

Finally, Chapter 6 discusses the overall contributions and conclusion.

3

Chapter 2

Related Work

2.1 Broad Research Area Overview

The concept of Markov chains has been known for over 100 years by mathematicians and

engineers. Since the 1960’s, optimizations and refinements afforded by algorithms such as

the Baum-Welch method allowed Markov models to be used for more complex applications,

namely speech processing and recognition [52]. Markov models are later used with success in

biological sequence analysis where efficient computational models are needed to process large

amounts of data [67]. While Markov models are known for their efficient pattern recognition

capabilities, they can also be used for sequence generation. Markov models have been used

successfully to generate music [41], natural language text [17], and speech synthesis [62].

Regardless of their application, Markov models are based on the “Markov property” which is

that a future state is only dependent on the last state. Put in terms of the probabilities of a

sequence s1, . . . , sn, the Markov property states the following:

p(si|s1, . . . , si−1) = p(si|si−1).

In general, Markov models are trained by counting the number of occurrences and

transitions between training words in a training dataset. Once the model is trained, sequences

can be generated by performing a simple random walk on the model: an initial word is

randomly chosen based on the count of word occurrences (called prior probabilities); then,

the next word is randomly chosen based on the counted transitions from the initial word to

4

other possible words (called transition probabilities). The chosen next word is appended to

the sequence and the process is iterated to produce a sequence. This process of sampling

probabilities makes the Markov model stochastic.

As of the last few decades, a popular class of models has been neural networks [57]. A

recurrent neural network (RNN) is a specialized neural network suited for sequence analysis as

well as sequence generation [23, 46, 59]. Like Markov models, they have been used successfully

in sequence based domains such as music [6, 19], natural language [61], and motion capture

[60]. An RNN generates sequences by repeatedly predicting words in a sequence. For an RNN

generating sequences, the network itself is deterministic; however, stochasticity is introduced

when repeatedly sampling words and its predictive distribution depends on the previous

words in the sequence [23]. In this way, RNNs store information about previous words in

the sequence to make its predictions of future words better. However, RNNs are not able to

store information about previous words further back in the sequence, i.e., a simple RNN has

no long-term memory [29].

Long Short-term Memory (LSTM) is an RNN variant that is designed to maintain a

longer term memory about previous words in the sequence [28]. LSTMs use multiple neural

networks as well as memory cells to achieve this increased ability to remember past inputs.

This allows LSTMs to display a better understanding of lasting structure and patterns in a

sequence compared to simple RNNs.

Another variant of RNNs meant to replace the LSTM for some is the Transformer

[63]. Unlike the LSTM, the Transformer does not need to process its data in a sequential

computation. Instead, it relies on an attention mechanism which allows the Transformer to

process data in parallel which significantly decreases training times. This allows the model to

be able to train on huge datasets with a fraction of the training time usually needed. As

such, the Transformer is seen as the current state of the art in natural language processing

and is used in projects such as OpenAI’s GPT-3 [8].

5

2.2 Constrained Models Research-Related Work

A common way of imposing structure onto generated sequences is to combine a model with

constraints. The combination of models with constraints implies the model is then able to

enforce user-defined constraints onto specific positions of a generated sequence. For example,

a model might constrain a generated sequence to end a sentence with a word that rhymes

with a word group. For this thesis, we will focus on unary constraints, i.e., constraints that

only involve one sequence position. However, binary constraints for Markovian models are

trivial to implement within the Markov scope.

Pachet et al. introduced the constrained non-hidden Markov process (CoMP) that

is a successful model for generating constrained sequences [42]. The differentiating factor

of CoMP and CHiMP is that CoMP uses a non-hidden Markov model and CHiMP uses

a hidden Markov model. CoMP maintains the property of Markovian models in that it is

simple to implement and efficient. CoMP has been used for music generation [42, 55], lyric

generation [2], and avoiding plagiarism [44]. The problem with CoMP is that as more and

more constraints are added, the solution space can diminish to the point of being unusable

[21]. In other words, rigorous constraints can greatly diminish the generalizing ability of

CoMP. Out of the models discussed in this section, CoMP is the most closely related model to

CHiMP. However, where CoMP performs poorly under rigorous constraints, CHiMP performs

well under many constraints due to its element of abstraction which is its hidden nodes.

A factor graph is a way of expressing a global function of several variables into a

product of local functions [20]. Factor graphs allow for a unified way of modeling in topics

such as signal processing, Kalman filtering, and Markov models [33]. In fact, factor graphs

subsume Markov models as well as Bayesian networks which are a more generalized Markov

model. The factor graph has been used to constrain a Markov model by composing a factor

graph of binary factors that combine a Markov model with an automaton [45]. The automaton

in the factors imposes unary constraints on the Markov model. This approach of using factor

graphs to constrain Markov models is functionally equivalent to CoMP.

6

Figure 2.1: The anticipation-RNN architecture as depicted by Gaëtan Hadjeres and Frank
Nielsen [24] where s1, . . . , sN sequence symbols are predicted given c1, . . . , cN constraint
symbols and the previous sequence symbols s0, . . . , sN−1. For each RNN cell, int is its input,
outt+1 its output, and ht its hidden state at time t.

Multi-valued decision diagrams (MDDs) are another way of expressing models and

are common in the field of constraint programming. MDDs are a compressing data structure

defined over a set of variables and used to store tuples of values [48]. MDDs, like factor

graphs, have been used to combine Markov models with constraints. Perez et al. state that

their use of MDDs was to demonstrate a more general way of constraining a Markov model

than factor graphs.

A model commonly applied to the task of sequence generation is the RNN. RNNs,

representing the neural network approach, are different from factor graphs, MDDs, and

CoMP in that they perform higher-dimensional interpolation of training instances when

making predictions [23]. This allows RNNs to exhibit more complex behavior through

generated sequences. Due to the more complex behavior, RNNs are not affected by the

zero-frequency problem as the probabilistic models are. However, RNNs typically do not

make guarantees of satisfying user-defined constraints. An anticipation-RNN [24] aims

to enforce unary constraints using a two stacked long short-term memory (LSTM) [23]

architecture as shown in Figure 2.1. The anticipation-RNN is used in the DeepBach system

and will be used for comparison with CHiMP [25]. The anticipation-RNN achieves success

in constraining Bach chorales to user-defined unary constraints; however, the model does

7

allow a percentage of generated sequences that do not satisfy constraints and thus still does

not make guarantees. For the anticipation-RNN, difficult or “out-of-style” constraints can

even have a poor constraint satisfaction rate (less than 50% of generated sequences satisfy

constraints) [24].

8

Chapter 3

“She Offered No Argument”: Constrained Probabilistic Modeling for Mnemonic

Device Generation

This paper was presented at ICCC 2019 and published in the conference proceedings pp. 81–88

3.1 Abstract

A common aspect to creativity as described by creative theorists is the juxtaposition and

balance of two opposing qualities, namely novelty and typicality. Practical models of computa-

tional creativity are needed that effectively leverage the contributions of each of these qualities

in a synchronous manner. We discuss the effectiveness of constrained probabilistic models in

representing this duality in generative models of creativity. We illustrate constrained Markov

models as an example of a constrained probabilistic model and demonstrate its application

to computational creativity in the elaboration of a system called NhMMonic for generating

mnemonic devices. We demonstrate the effectiveness of the system1 using a qualitative survey.

Our findings suggest that the constrained Markov model is particularly effective at generating

mnemonics that exhibit novelty and typicality in grammatical and semantic flow with the

overall result of more effective mnemonics for the purpose of memorization. Source code as

well as our mnemonic device generator are both freely accessible online.

1An interactive demo can be viewed at https://ccil.cs.isu.edu/projects/mnemonic/

9

https://ccil.cs.isu.edu/projects/mnemonic/

3.2 Introduction

Computational creativity (CC) has been defined as “the philosophy, science and engineering of

computational systems which, by taking on particular responsibilities, exhibit behaviours that

unbiased observers would deem to be creative” [12]. The plural focus on the philosophy, science

and engineering of computational systems has yielded valuable theoretical contributions as well

as a number of functional creative systems. Emergent from this plural focus is the challenge

of maintaining harmony between theory and practice. To be sure the abstract philosophy

and concrete engineering can and should work to challenge one another in their mutual

growth and evolution; however, the goal ultimately is to develop systems that accurately

reflect the philosophical moorings and to advance theories whose tenets agree with what is

observed about creativity in practice. Thus the role of practical models of creativity becomes

significant—models that, by virtue of their ability to implement principles deriving from the

philosophy, can be generalized beyond any single creative system with great effect, while

maintaining ready applicability and implementability. As described by Jordanous [30], these

models define the creative process of a system, namely “what the creative individual does to

be creative.”

Several examples of practical models of creativity have been demonstrated. Evo-

lutionary models represent a practical implementation of the widely-accepted theory that

creativity is a self-evaluative, iterative process as discussed by Cśıkszentmihályi [14] (e.g., see

Morris et al. [35]). Related is the model of a dynamic knowledge base [49] in which novel

artefacts that have been evaluated as belonging to the domain are added to a system’s set of

exemplars, possibly altering the definition of the domain itself (e.g., as discussed by Boden

[3]). Generate-and-check is another model that has been suggested as being representative of

the creative process [47].

In considering the modeling of theoretical aspects of creativity, one particularly

intriguing aspect that is often discussed is the tenuous balance that a creative system must

maintain between novelty and typicality—the adherence to structural domain-defining rules

10

combined with an exploratory discovery of new, valuable artefacts. These two characteristics

can sometimes seem at odds with one another; a creative system must both obey norms at

some level and break them entirely at other levels. It is the juxtaposition of these qualities

that evokes the perception of creativity: the observer recognizes and appreciates an artefact

relative to its contextual domain while at the same time being challenged and surprised

as a result of the artefact’s unique traits and value. Cśıkszentmihályi [14] emphasizes that

creativity stems from a person learning the rules of and basic procedures of a domain and

then channeling thinking based on those rules in new directions. Saunders and Gero [58]

puts novelty and typicality on a spectrum called the Wundt curve or “hedonic function” and

frames successful creativity in terms of finding the correct balance of typicality and novelty

(see Figure 3.1). Margaret Boden [3], in her seminal work The Creative Mind: Myths and

Mechanisms, compares (exploratory) creativity to navigating a “structured conceptual space”

to find “things you’d never noticed before.” Wiggins [66] elaborates a formal mechanism

of Boden’s concept of creativity by defining two rule sets, R and T . Of these two sets R

is a set of rules which “constrain the space” to a representation of “the agreed nature of

what the artefact is, in the abstract”; T , by contrast, is a set of traversal rules which, when

constructed effectively, is designed to find concepts that have not been previously discovered.

Ritchie [53], in defining empirical criteria for attributing creativity to a computer program,

defines three essential properties, two of which are novelty and typicality (the third is quality,

which Boden also emphasizes and which we will discuss below).

Many existing abstract frameworks for building creative systems have been described,

several of which explicitly model the components of novelty and typicality (e.g., [65]). Our

purpose is not to present a new framework or pattern for creative systems; rather our purpose

is to discuss from an implementation standpoint how typicality and novelty can be modeled

so as to explicitly leverage their unique contributions and simultaneously ensure that both

are effectively achieved. In what follows we examine the suitability of a previously unexplored

model in CC—a constrained probabilistic model—for this purpose. We describe how the

11

Figure 3.1: The Wundt curve models value as the sum of two nonlinear functions: Hx which
rewards novelty, and Nx which punishes novelty beyond some threshold of typicality, from
Saunders and Gero [58].

dual nature of this model mirrors the dual properties of typicality and novelty and how the

model strikes an appropriate balance between them. As a concrete example of the effective

application of these models to generate novelty and typicality, we describe an implementation

of a constrained Markov model, NhMMonic, for generating mnemonic devices. We show using

evaluative surveys that the system generates mnemonics that demonstrate typicality, novelty,

and value (as measured by how well the mnemonic facilitates memorization and learning).

3.3 Parallels Between Computational Creativity and Constrained Probabilistic

Modeling

Computational creativity can be thought of as a generative act in which, for some particular

domain, the set of possible artefacts D = {x1, . . . , xn} is represented as a random variable

X that with probability P (xi) takes on the value xi. The primary strength of probabilistic

models is that they generalize well from a set of training examples to be able to generate

12

novel artefacts. Inasmuch as this generalization is accomplished independent of the biases of

the system designer, it lends strength to the argument that probabilistic systems possess some

degree of autonomy beyond manually-crafted rule-based systems. In practice, implementing

a creative system in this manner presents two challenges.

One challenge is determining the probability distribution P (X): with what probability

should the model generate a particular xi? This challenge can be solved explicitly—as in the

case of systems that manually encode a generative process—or implicitly—as in the case of

systems that attempt to learn abstract statistical properties from a set of training examples.

Prior to or in the course of resolving the first challenge, we face a second, more

formidable challenge: defining the domain D itself. Decisions about whether a particular

artefact xj belongs or does not belong to D can vary from one individual to the next [31].

For now let us assume that D exists as a “fuzzy” subset of some larger domain, which we

shall call UD and which represents the universal set of all artefacts that can be represented

using the same language with which artefacts in D are represented. For example, the domain

of haiku exists as a subdomain of natural language generally. The domain of musical chorales

exists as a subdomain of musical compositions generally. The fuzziness of the set D can

derive from a variety of issues such as the difficulty in precisely defining D or the willingness

of domain experts to accept artefacts that (to varying extents) break the rules typical of an

artefact in D.

Any particular creative system defines a set that more or less approximates D and

possibly includes some artefacts that are less commonly agreed upon as belonging to D (see

Figure 3.2). How this set is implemented is important in designing creative systems that

efficiently generate artefacts in D. For rule-based systems, the rules by which an artefact

belongs within the set are hard-coded; logic is designed to prevent consideration of artefacts

that break rules of the domain beyond some threshold. For evolutionary models, this set can

be defined by designing a fitness function that penalizes artefacts outside of this domain.

13

Figure 3.2: In many forms of creativity, the set of domain artefacts D exists as a structured
subset of a larger domain UD of all artefacts that can be represented using the same language
as is used to describe artefacts in D. Due to the inherent difficulty of defining belonging to
a particular domain for a general audience, the set of artefacts included in D is in reality
somewhat vague. In practice creative systems define a set that approximates D which defines
the expressive range of the model. The extent to which this set includes or excludes artefacts
that are commonly accepted as belonging to D controls how conservative or liberal the model
will be in judging whether or not an artefact is representative of the domain.

The set can also be defined as a set of constraints given as input to a constraint satisfaction

solver, but with limited sense of how good one solution is with respect to another [40].

In the process of generalization, probabilistic models trained with artefacts from D

are typically capable of generating artefacts that do not belong in D. Increased expressive

power in these models (i.e., the ability to generalize novel solutions) derives from maximizing

independence relationships between elements of an artefact (e.g., being able to model rhythm

and pitch separately in a music composition). This process can, however, lead to the

generation of artefacts whose combined elements produce artefacts that most would agree do

not belong in D.

Suboptimal solutions exist to ensure that a probabilistic model generates artefacts

within the domain D of interest. Probabilistic models could ensure their output by minimizing

independence assumptions (i.e., forcing the model to generate solutions more similar to the

training data). This solution significantly decreases the model’s ability to discover novelty

14

from the training data. This solution also requires training on data that is more precisely

representative of D. A second suboptimal solution is the generate-and-check or rejection

sampling model: probabilistically generate artefacts using the over-generalized model and

then filter results to those within the D [47]. This solution not only creates inefficiencies,

but often assigns low probability to artefacts belonging to D [65]. In such cases it becomes

improbable that the system generates valid artefacts in reasonable time [42].

A better solution to the problem of enforcing the model’s domain of artefacts is

the incorporation of constraints into a model that maintains probabilistic reasoning. The

“fundamental entwinement of constraints and creativity” has been noted as an area of recent

interest for creativity research, “with skillful and innovative handling of constraints seen as a

prerequisite for apt creative performance” [40].

A constrained probabilistic model defines a set of rules for belonging in D as a set of

constraints C. Given C and a probability distribution PUD(xj) for all artefacts in xj ∈ UD, a

constrained probabilistic model defines the probability of generating an artefact xi as

P (xi) ∝

PUD(xi) if xi satisfies C

0 otherwise

By defining constraints explicitly, the model can be trained on artefacts from UD generally,

maintain independence assumptions that maximize expressivity, and ensure probability within

the generative model is only assigned to artefacts which belong to D.

There are several types of constrained probabilistic models including multi-valued

decision diagrams (MDDs) for sequential domains [48]; MDDs that enforce constraints on

non-discretized temporal sequences [56]; factor graphs for imposing constraints represented

as regular languages Papadopoulos et al. [45]; and non-homogeneous Markov models [42].

Each model incorporates a probabilistic element designed to imitate statistical properties of

a corpus—with model parameters (e.g., Markov order or context length) that control the

degree of similarity to the corpus—and constraints to guarantee specifiable characteristics of

15

the application domain. Previous work has also shown how constraints can be used avoid

plagiarism (i.e., limit the model’s output domain to D less the artefacts used for training)

[43]. It is of interest to note that much of the language used to describe the implementation

of these models mirrors closely the language used to by creative theorists to describe the

relationship between novelty and typicality. For example, Perez, Guillaume and Régin [48]

describe the process by which the model generates new phrases as a “sampling of the solution

set while respecting probabilities,” specifying that the solution set “incorporate[s] some side

constraints defining the type of phrases we would like to obtain.”

3.3.1 Quality Assurance

We have discussed how constrained probabilistic models are well-suited for explicitly modeling

typicality and novelty, but what about quality? As Boden [3] puts it, “a computer could

merrily produce novel combinations till kingdom come. But would they be of any interest?”

How well are constrained probabilistic models able to produce or evaluate quality?

To the extent that quality can be represented in either the system’s probabilistic

model and/or the system’s constraint set, a constrained probabilistic model is naturally

endowed with a function for evaluating the quality of the artefacts. By structuring the

system’s probabilistic model such that high quality artefacts (by some definition of quality)

are assigned higher probability, the system will naturally gravitate towards stochastically

generating artefacts of value (as will be shown in our demonstrative example). In cases

where quality is a function of the presence or absence of certain characteristics (consider,

for example, assessing quality based on the presence of satisfactory rhymes), the system’s

constraints can ensure that only artefacts of some minimum quality threshold are generated.

A constrained probabilistic model thus does not define its own function for evaluating

quality, but does inherently encode one in the forms of probabilistic models and sets of

constraints (both of which could be explicitly defined or themselves learned from some

training data, as demonstrated in [4]).

16

3.4 Non-Homogeneous Markov Models

We describe a computational creative system for generating mnemonic devices using a non-

homogeneous Markov model (NHMM), a constrained probabilistic model that is also called a

constrained Markov model [42].

A Markov model M is a stochastic, probabilistic model defined over a finite state

space that strictly adheres to the Markov property, meaningM is memory-less beyond a finite

window. The set of all sequences s = s1, . . . , sn of length n generated by M is represented

by S (in our current example this can be thought of as being equivalent to UD from above).

Every sequence s ∈ S has a non-zero probability equivalent to

PM(s) = PM(s1) · PM(s2|s1) · · ·PM(sl|sn−1)

M is constructed by computing the probability matrix PM from training examples.

A non-homogeneous Markov model N is constructed from a Markov model M, a

sequence length l, and a finite sequence of unary constraints {C1, . . . , Cl}. The set of solutions

for N is represented by SC (equivalent to bounded D from above). With the constraints

applied to N , the probabilities of sequences generated by N must equal the probability of

the same sequence generated by M:

PN (s) =

PM(s) if s ∈ SC

0 otherwise

N initially constructs l− 1 probability matrices identical to PM inM, one for each transition

in the sequence to be generated. States or transitions that violate a constraint are removed.

Arc consistency is then enforced on the probability matrices, meaning that states or transitions

that do not lead to a solution s ∈ SC are removed (see Figure 3.3b). Because the probability

matrices in the NHMM are arc consistent and therefore non-zero probabilities are guaranteed

17

to lead to a solution s ∈ SC . This guarantee of solutions avoids the inefficiency generate-

and-check where nearly all samples are rejected when the probability of a solution is small.

Finally, the model is re-normalized such that probabilities PN (s) = PM(s|s ∈ SC) [42].

NHMMs have been applied to model music generation, generating melodies constrained

to begin and end on the same note [42]. Barbieri et al. [2] apply NHMMs to generate lyrics

matching rhyme, syllable stress, part-of-speech, and semantic constraints.

3.5 NhMMonic

Here we demonstrate the application of constrained probabilistic modeling to computational

creativity through non-homogeneous Markov modeling of mnemonics (abbreviated as NhM-

Monic). We define a mnemonic task as a sequence of words s = s1, . . . , sl to be memorized.

A mnemonic device then is a sequence of words m = m1, . . . ,ml of the same length generated

such that for all 1 ≤ i ≤ l the first letters in the words si and mi are constrained to be the

same (see Figure 3.3). The primary purpose of a mnemonic device is to aid in memorization

of the order and/or identity of a s by finding a more memorable sequence m that through

its constrained similarity to s can serve as a reminder of s. The value of an artefact in this

domain is heavily predicated on its effectiveness in facilitating memory.

To our knowledge no mnemonic device generation models have been formally presented.

We find that most available Mnemonic generation tools online use what we will call a template

method. The template method for mnemonic generation first determines a sequence of part

of speech constraints as a function of the length l of the sequence to be generated. Words

matching these constraints and the aforementioned first-letter constraints are randomly

selected from a word bank to fit into the specific sentence structure. The shortcoming to

most template-based methods is that they do not model transitions between words, resulting

in phrases that exhibit grammatical cohesion, but not semantic cohesion.

Because NHMMs explicitly model transitions between words while allowing for con-

straints, we consider this model a good candidate for the mnemonic problem. Although

18

Stream-enterer, Once-returner, Non-returner, Arahant

(a) A Mnemonic Task

(b) Constrained Probabilistic Model (NHMM)

“She offered no argument”

(c) Mnemonic Device Generation

Figure 3.3: The NhMMonic model. (a) A mnemonic task (i.e., the four stages of enlightenment)
to be memorized. (b) A non-homogeneous Markov model built to solve the mnemonic task.
M1, M2, and M3 represent Markov constraints; C1, C2, C3, and C4 denote unary constraints
derived from the task. Nodes marked with white X’s are removed due to violation of unary
constraints while the node marked with a grey X is removed to keep the model arc consistent.
Edge labels indicate transition probabilities. (c) A possible mnemonic generated by the
model.

NHMMs can and have been used to impose part-of-speech constraints or templates, we chose

not to include these constraints in our NHMM implementations preferring to demonstrate

that even a relatively simple NHMM can provide good results. While we expect both models

to be capable of generating novelty (or uniqueness as it is labeled in our survey), we expect

NHMMs to outperform other mnemonic device models when it comes to the aspects of

typicality relating to grammatical/semantic cohesion and ease of memorization.

19

3.6 Methods

In assessing the NhMMonic system we applied two variants of NHMMs. NHMM-1 has a

Markov order of 1 and NHMM-2 has a Markov order of 2 (essentially treating each pair of

words as a single state token). A higher Markov order allows the mnemonic output to more

closely resemble the sample text, increasing the model’s cohesion and typicality. A drawback

of having a higher Markov order is that fewer solutions s ∈ SC are found and in some cases

no solutions are found given finite training sentences. NHMM-1, with its lower Markov order,

allows our system to find solutions when NHMM-2 does not.

For a mnemonic task s = s1, . . . , sl, we derive a unary constraint oat position i to

ensure that the first character of the sequence variable mi matches the first given letter of si.

For the purposes of improved readability of generated mnemonics we impose a few additional

constraints. For NHMM-1, we constrain each sequence variables mi to be at least 4 letters

long and the last variable ml to have ended a sentence in the training set. For NHMM-2 the

only added constraint is to ensure that the last variable ml is not a pronoun, preposition,

conjunction, or determiner.

The code for the NHMMs used by the NhMMonic system are available in both a C++

implementation2 (used for NHMM-1) and a Java implementation3 (used for NHMM-2) online

3.7 Results

To evaluate the use of constrained Markov models for generating mnemonic devices, we

devised an online survey to compare four different mnemonic device generation models:

• Template—a third-party model4 that selects a part-of-speech template to match the

desired sequence length and then randomly selects words matching part of speech and

initial letter constraints from a hand-crafted word bank.

2https://github.com/po-gl/ConstrainedMarkovModel
3https://github.com/norkish/downbythebay/tree/master/DownByTheBay/src/dbtb/markov
4Available via https://spacefem.com/mnemonics

20

https://github.com/po-gl/ConstrainedMarkovModel
https://github.com/norkish/downbythebay/tree/master/DownByTheBay/src/dbtb/markov
https://spacefem.com/mnemonics

• NHMM-0—a model which randomly selects words matching initial letter constraints

with probability derived from word frequencies in the training corpus.

• NHMM-1—a first-order NHMM as described above.

• NHMM-2—a second-order NHMM as described above.

The latter three models were trained on the COCA dataset [16]. NHMM-0 and

NHMM-1 were trained on 6.8 million sentences from fictional works written between the

years 1995 and 2015 while NHMM-2 trained on 3 million sentences from the same works.

Each model was used to generate 4 mnemonic devices for each of 19 different memoriza-

tion tasks5 (Figure 3.6 shows some examples of tasks included in the experiment). NHMM-2

was able to find satisfying solutions to 12 of the tasks.

To evaluate the generated mnemonics, we designed a survey in which each evaluation

consisted of four parts:

1. The respondent was shown one of the 19 memorization tasks for 10 seconds.

2. The respondent was then shown a mnemonic device for the memorization task for 10

seconds (selected randomly from those generated by the four models).

3. The respondent was then given the (unordered) words from the original memorization

task and asked to put them in the correct order based on his/her memory of the task

and the mnemonic.

4. Lastly the respondent was asked to evaluate the mnemonic device (using Likert scales

from 1 to 5) for

(a) memory—ease of memorization

(b) flow—grammatical/semantic coherence

(c) creativity—overall creative value

(d) uniqueness—degree of novelty

5Mnemonics for all models can be seen at https://tinyurl.com/yxczxjh7

21

https://tinyurl.com/yxczxjh7

Figure 3.4: Survey Results. Average ratings from 320 evaluations across four metrics for four
different mnemonic device generation algorithms. Error bars are standard deviation. The
ease of memorization of mnemonics from the NHMM-2 model appears to be associated with
improved flow with respect to other models.

Each respondent completed four evaluations in this manner.

A total of 80 individuals completed the survey for a total of 320 mnemonic device

evaluations. The survey was distributed to different social media websites, such as Reddit,

Facebook, and Twitter. No personal information was gathered before or after the survey was

taken. Figure 3.4 shows average scores for the four evaluated characteristics by model. The

NHMM-2 model made notable improvements over other models in the categories of ease of

memorization (memory) and grammatical/semantic cohesion (flow). Although the NHMM-0

model performed relatively poorly on memory, flow, and creativity, this model was considered

equally capable of generating novelty (i.e., uniqueness).

Figure 3.5 shows the impact of task length on ease of memorization, showing generally

that the longer a mnemonic task is, the more difficult mnemonics generated for the task are

to remember. The graph also shows, however, that the NHMMs and NHMM-2 in particular,

is able to generate mnemonics that maintain ease of memorization even for longer tasks.

22

Figure 3.5: Impact of Task Length. As the length of the memorization task increases, the
effectiveness of mnemonic devices decreases across all models, but at a much lesser rate for
the NHMM-1 and NHMM-2 models. We hypothesize that this is owing to the sustained
grammatical and semantic flow that these models achieve from the constrained Markov model.

Figure 3.6 shows seven mnemonic device tasks together with the highest-rated

mnemonic devices (as per average memory score) generated by NhMMonic for the task.

3.8 Discussion

Survey results demonstrate that increased grammatical/semantic cohesion afforded by prob-

abilistic Markov models are associated with gains in ease of memorization. The fact that

increasing the Markov order leads to further gains in both flow and memory is further

evidence of this correlation. These gains from increasing the Markov order were also mirrored

in increased creativity scores, suggesting that in the domain of mnemonic device generation,

there is an association between the creative success of a mnemonic device and how easily it

can be remembered.

This association between the success or popularity of an artefact and the ease with

which the brain is able to process and remember it has been observed in creative domains

that do not deal directly with memorization tasks. A notable example is the study by Nunes

23

Four Stages of Enlightenment: Stream-enterer, Once-returner, Non-returner, Arahant

“She offered no argument” (NHMM-2, 5.0)

Dante’s 9 Circles of Hell: Limbo, Lust, Gluttony, Greed, Anger, Heresy, Violence, Fraud, Treachery

“Lovely little girl giggles as his voice for them” (NHMM-1, 5.0)

Last 10 Winners of the FIFA World Cup: France, Germany, Spain, Italy, Brazil, France, Brazil, West Germany, Argentina, Italy

“Four-year-old grandson she is bumped from behind with an inflection” (NHMM-2, 4.0)

First 9 ICCC Locations: Lisbon, Mexico City, Dublin, Sydney, Ljubljana, Park City, Paris, Atlanta, Salamanca

“Like most days she looked pretty puny and sickly” (NHMM-2, 4.5)

Stages of Grief: Denial, Anger, Bargaining, Depression, Acceptance

“Dreams about being dragged against” (NHMM-1, 5.0)

Levels of Biological Organization: Biosphere, Ecosystem, Community, Population, Organism,

Organ System, Organ, Tissue, Cell, Molecule

“Blue eyes could pick out one of those clownish men” (NHMM-2, 4.5)

Cell Mitosis Cycle: Interphase, Prophase, Prometaphase, Metaphase, Anaphase, Telophase, Cytokinesis

“I pushed past me and the career” (NHMM-2, 5.0)

Figure 3.6: Top-rated mnemonics generated by NhMMonic. Seven mnemonic device tasks
are shown. Each task consists of a description (bold and underlined) followed by a list of
words requiring a mnemonic device. Below each task is the NhMMonic-generated mnemonic
device that received the highest memorization score (with the exact model and score given in
parentheses).

et al. [38] that demonstrates an association between the popularity of music and the degree

of repetition in the song. Researchers observed that increased repetitiveness contributed to

higher “processing fluency”, meaning the ease with which the brain is able to grasp a new

concept or artefact. A constrained Markov model, through its probabilistic transition model,

naturally assigns higher probability to frequent word transitions (which we might assume

have higher processing fluency) while using constraints to ensure that generated mnemonics

also satisfy the basic requirements of a mnemonic device.

As is typical of Markov-based models, increasing the Markov order can also have

negative consequences. The higher the order the more similarity exists between generated

artefacts and the training data. Increasing the order also increases the likelihood of the

model not being able to find a solution that satisfies both the (now more stringent) Markov

constraints and non-Markovian constraints. Both of these problems can be overcome by

24

training on more training data, but the amount of training data needed to sufficiently eradicate

the problem increases exponentially with the Markov order.

Independent of the model training, some mnemonic tasks are inherently more difficult

owing to the low frequency of words and word beginning with certain letters (this is, of course,

language-specific). Consider for example trying to devise a mnemonic device in the English

language for the first five dynasties of China, “Neolithic, Xia, Shang, Zhou, Qin”. Solutions

certainly exist, but unless the model sees examples in training of word pairs that would be

suitable for each word pair in the task (less likely for infrequent collocates), the model will

not be able to find them. On these types of tasks we might expect the non-Markovian models

to perform better.

We considered other variations of constraints that might have further improved the

results of our model. One improvement considered was to constrain more than just the first

letter of each word in the mnemonic to match the task. We thought this might further

increase the ease of memorization. However, it is generally the case that as constraints

become more strict, the model is able to find fewer solutions, often leading to the model

being unable to find satisfying solutions. Another improvement we considered was combining

the Template and NHMM approaches through part of speech constraints in the NHMM

model. We also considered ways to impose semantic themes within mnemonic devices either

through unary semantic constraints or through varying the training data. We leave these as

exploratory ideas for future work.

Many forms of creativity have relational structure (e.g., rhyme schemes, repeated motifs,

etc.). Unlike the example we have shown here which uses solely unary constraints, relational

structure is most effectively realized using binary constraints. Sampling from constrained

Markov models with binary constraints is known to be a much harder problem (see [54]),

however recent work has been done towards providing reasonable solutions [45, 56]. This has

relevance for imposing semantic constraints in models of mnemonic device generation because

binary constraints can effectively be used to impose floating constraints (i.e., constraints that

25

can be satisfied at variable positions) rather than specifying a specific word position where

semantic constraints must be satisfied.

NHMM doesn’t directly model all aspects of creativity. For example intention, explicit

self-evaluation, others? Constraints themselves can be learned or imitated. One ramification

of learned constraints is that in addition to whatever constraints are required to define

typicality, additional constraints could themselves be probabilistically applied in generating

artefacts. This would allow constraints to be “broken” (or rather never applied) with some

degree of probability, demonstrating a method by which rules can be “intelligently” broken.

In this work we have discussed aspects of constrained probabilistic modeling that

are well-suited for consistently generating novelty and typicality in computational creative

artefacts. As an example, we have demonstrated the application of non-homogeneous Markov

models to the problem of mnemonic device generation. Our results suggest that the constrained

Markov model approach is able to effectively generate mnemonic devices that satisfy basic

requirements of mnemonic devices while exhibiting elevated levels of grammatical/semantic

flow, ease of memorization, and creative value.

3.9 Acknowledgements

Many thanks to the team at spacefem.com for their assistance using the spacefem mnemonic

device generator.

26

Chapter 4

A Leap of Creativity: From Systems that Generalize to Systems that Filter

This paper was presented at ICCC 2020 and published in the conference proceedings pp.

297–302

Abstract

In his work “Mere Generation: Essential Barometer or Dated Concept?”, Ventura [64]

categorizes creative processes along a spectrum of increasing creativity. While the spectrum

provides insight into the dimensions through which creativity can be augmented, it does not

of itself provide insights into how to advance a system through these dimensions. In this

paper, we present some theoretical and practical insights on advancing along one commonly

problematic rung of this ladder, namely from a system that exhibits generalization (i.e., the

ability to generalize beyond an inspiring set) to a system that exhibits filtration (i.e., the

ability to self-evaluate and filter results). One potential challenge in this transition is that

filtration requires having a sufficiently large number of solutions to filter from the generalizing

model. We propose that one solution to this problem is achieved not through increasing

the size of the inspiring set (an obvious solution that brings additional problems), but

rather through amplifying the generalization of the system to produce a greater set of novel

artefacts to filter. We compare a new version of a system, NhMMonic, for generating creative

mnemonic devices with a new conceptualization model that allows greater generalization. We

demonstrate how filtration, which was not possible in the early version of NhMMonic, only

becomes feasible with the more generalizable model.

27

Figure 4.1: Ventura’s spectrum of creative systems provides a means by which to measure the
progress of a system towards becoming creative [64]. Characterizing challenges and solutions
that are specific to each level in the spectrum helps to actualize the spectrum into becoming
a guide for building more creative systems.

4.1 Introduction

The field of Computational Creativity (CC) has been supported in its quest by several

significant contributions in the domain of CC theory. One such contribution exists in

Ventura’s spectrum of creative systems [64]. This spectrum suggests that there exist at

least seven different levels along the path towards computational creativity including levels

such as randomness, memorization, generalization, and filtration (see Figure 4.1). Ventura

asserts that along this spectrum, real computational creativity starts at least as early as

generalization with filtration representing perhaps a conservative threshold.

While this spectrum is useful for measuring the progress of applied CC systems, it

leaves two important questions unanswered:

1. For each level of the spectrum, what challenges are CC systems likely to encounter?

2. What suggestions can be made to overcome those challenges?

Answers to these questions would provide a way to actualize the spectrum into a guide for

augmenting the creativity of computational systems.

Our motivation in considering these issues came about in the context of our previous

work using constrained Markov models to generate mnemonic devices [5]. Markov models

are an example of a generalizing model. The application of constraints to Markov models

28

represents the act of filtration. In applying constraints to generate mnemonic devices, it

frequently occurred that no satisfying solutions could be found.

The purpose of this paper is to provide answers to two questions stated above with

specific regard to systems that have achieved the level of generalization and are attempting

to make the “leap” to the level of filtration. This step is of interest as it marks the transition

from a budding creative system to an intentionally creative system. This leap is significant in

light of the fact that of the last four levels of the spectrum—where true creativity is said to

emerge—this is the first step.

Generalization systems produce artefacts using an internal conceptualization—a model

which embodies an understanding of a domain and allows for the creation of artefacts that

belong to the domain [65]. Examples of conceptualizations include using long short-term

memory models for music generation [36], neural networks for visual art [37], and Markov

processes for music and text generation [2, 42].

One particular challenge we have repeatedly observed in the development of CC

systems at this level is the challenge of dealing with diminishing solution spaces. This

problem arises commonly when attempts are first made to add filtration to a generalization

system because filtration by definition implies the reduction of a system’s solution space.

The purpose of the filtration step is to equip the system with self-evaluative capabilities for

restricting the artefacts it generates based on measurements of fitness. However, a well-known

trade-off arises: stricter filtering leads to better, but fewer results. In some cases the results

are so few that it becomes difficult to justify that the system is capable of generating anything,

let alone artefacts that are novel. How can systems overcome this challenge?

A simple solution for increasing the solution space is to simply increase the size of

the inspiring set. For many conceptualizations of CC systems this alone will increase the

overall throughput of the system, and often increases the generalizability of the system as

well. However, for most domains, finding a larger inspiring set ranges from being impractical

to an impossibility. What more practical solutions exist?

29

We propose and illustrate through example how increasing the generalizability of a

generalization system through abstraction and regularization can increase the solution space

without requiring a larger inspiring set. Well-known methods exist for generalization of

most conceptualization models used for CC systems, including L1 and L2 regularization for

neural networks, shortening the Markov window length in Markov processes, generalizing the

fitness function for genetic algorithms, and abstracting rules in rule-based systems. Through

regularization and abstraction, a system is able to better leverage the knowledge in an

inspiring set in order to increase the solution space.

In demonstrating the impacts of abstraction and generalization, we comparatively

consider the performance of two models: a less abstract model (CoMP) and a more abstract

model (CHiMP). We assess the ability of each model to intentionally produce novel artefacts.

We choose to focus explicitly on the creative attribute of novelty—setting aside the attributes

of value and intentionality—inasmuch as it is the attribute of creativity most directly relevant

to our discussion [53, 64]. We discuss the impacts of generalization on value in the discussion

section below.

4.2 Methods

NhMMonic [5], is a CC system designed to generate mnemonic devices. At its heart,

NhMMonic uses a constrained Markov process (CoMP) for its conceptualization model. This

constrained Markov process allows for the combination of a (non-hidden) Markov process

(e.g., trained on words) and a set of unary constraints (e.g., word-starts-with constraints) such

that the model is able to generate constraint-satisfying sequences according to Markovian

probabilities [42]. In previous work we demonstrated through qualitative surveys the strength

of this model (particularly at higher Markov orders) for generating effective mnemonic devices.

A byproduct of our analysis revealed that for many mnemonic device problems, the addition

30

Figure 4.2: A high-level schematic of a constrained hidden Markov process (CHiMP) of
length 4 constrained so that the last word is “red” and the first word rhymes with “red”.
Each column represents a position in the sequence to be generated. Each node represents
a hidden state (i.e., part-of-speech) and a probability distribution for the observed states
(i.e., words) that can be generated from that hidden state. By pruning observed states that
are disallowed by constraints and then adjusting probabilities to maintain arc-consistency,
the resulting model generates constraint-satisfying solutions with probability relative to the
original probability distribution [22]. Hidden states pruned directly from applying constraints
are indicated by dark grey nodes and states pruned during arc-consistency are indicated by
light grey nodes.

31

of constraints (i.e., filtering) resulted in NhMMonic being incapable of finding satisfying

solutions despite being trained from relatively large inspiring sets.

A known method for increasing the generalization of Markov models is through the

introducing of an abstract hidden layer resulting in a model known as a hidden Markov

process. Direct dependencies between adjacent observed sequence elements are dissolved in

the hidden Markov process, allowing for greater decoupling between sequence elements. This

generally results in hidden Markov processes having significantly higher expressivity with

respect to their non-hidden counterparts.

To combat the challenges facing NhMMonic with respect to a diminishing solution

space, we designed a new conceptualization model for the system that combines hidden

Markov processes with constraints in much the same way that constrained Markov processes

combined non-hidden Markov processes with constraints [22]. The resulting model is called a

constrained Hidden Markov process (CHiMP) which is visualized in Figure 4.2. The CHiMP

model was chosen under the hypothesis that increased abstraction, resulting in increased

generalization, would lead to a significantly larger solution space.

In implementing a filtration system, it is apparent that a large solution space is needed.

Using two hypothetical models A and B (seen in Figure 4.3) we illustrate the restriction

that solution space imposes on a system’s ability to step from a generalization system to

a filtration system. Model A fails to have a solution space after filtering and thus remains

a conceptualization for a generalization system. Model B, however, has a larger beginning

solution space β due to an increase in the model’s ability to generalize the inspiring set. Thus

model B has a usable solution space β′ after filtering and can be categorized as a filtration

system.

32

Figure 4.3: The application of filters on two hypothetical models (A and B) demonstrates the
requirement for larger solution spaces (increased generalization) in order to endure filtering
with a usable solution space. Model B has a usable solution space after filtering; thus the
model has moved further along in the spectrum from generalization to filtration.

4.3 Results

In demonstrating the increased generalization (and hence increased solution space) of CHiMP

over CoMP, we compared the results of each model trained on the Corpus of Contemporary

American English (COCA) [16] and provided the same set of constraints. In particular, we

selected training sets from the 2012 fiction portion of COCA and constrained each model

to only output sequences in which the first letter of each word began with the same letter

(e.g., a tongue-twister). We chose this problem because it represents a fairly general example

of constrained sequence generation that is easily adapted to sequences of varying lengths.

Results are averaged over 26 instances of the problem with each instance having constraints

defined with a different letter of the English alphabet.

Some qualitative results are shown in Figure 4.4. It should be noted that within the

subset of 40 sequences generated by CHiMP, no duplicate or similar solutions where present;

whereas 6 sequences were duplicates (or very similar) in the subset generated by CoMP.

We examined the effect of changing the sentence/model length on the novelty of the

system in terms of the total number of unique solutions capable of being generated by each

model (see Figure 4.5). As the sentence length increases, so too do the number of constraints

33

on the sequence to be generated. In the abstracted CHiMP model, this is inconsequential;

the model can afford to make restrictions at the observed node that do not affect transitions

between sequence positions (which are isolated in the hidden layer). Only occasionally do a

sufficient number of pruned states combine to require the pruning of a hidden state node,

but such is a relatively rare occurrence.

By contrast, the effects of increased sentence length on the CoMP model are severely

limiting. Each added position would typically add a number of novel unique solutions if it

did not come with the addition of a new constraint. The newly constrained position has direct

influence on previous observed sequence states and thus pruning values from the domain

of these variables directly results in the removal of transitions between adjacent sequence

positions. This results in a relatively slow growth in the solution space as sentence length

grows.

The increase in the CHiMP model appears to be exponential owing to the multiplicative

effect achieved by maintaining large domains for adjacent variables in the hidden layer.

Similar trends in the impact on novelty are manifest when we vary the training set

size, keeping sentence length constant (see Figure 4.6). We see that the size of the solution

space for the CHiMP model increases exponentially. The CoMP model also appears to have

some slightly exponential growth, but at a significantly lower rate. This is again what we

would expect to see. Increasing the training set size (when such is a possibility) still has a

more significant impact on CHiMP than on CoMP model.

The results shown in Figures 4.5 and 4.6 suggest that CHiMP, with respect to CoMP,

facilitates exponentially more novelty. The solution space of the CoMP model is by definition

a subset of the solution space of the CHiMP model, and for most training and constraint sets

will be a substantially smaller subset. It is expected that of the novel results produced by

CHiMP, some will have higher value than the solutions shared by both models. Because the

CHiMP model abstracts to a more significant degree from the training set than the CoMP

model, we might expect a greater portion of the novel solutions to be of lower value. The

34

CoMP Tongue Twisters:
late last light levels like lady
Diaz did dinosaurs died dell drove
max mowed my mother made my
language lessons last look little lamb

CHiMP Tongue Twisters:
queen Quanhe quite quiet queasy qualified
flower facing forward for from forester
free feeling facing followed free fate
every educated Elizabeth expected Erika enchanting

Figure 4.4: Example results from generating 6-length tongue twisters (i.e., alliterative
constraints) from both the CoMP and CHiMP models. Both models were trained on 10K
sentences. Results are chosen from a randomly selected subset of 40 sequences from each
model. The quality of tongue twisters is roughly equivalent between both models (both
poor), but the CHiMP model is capable of generating exponentially more solutions. This
suggests that increasing the Markov order in the CHiMP model (as an example of more
stringent constraints) will have far less deleterious affects on the solution space as compared
to a similar increase in the CoMP model.

suggestion from qualitative results shown in Figure 4.4 is that there is no obvious degradation

of value. However, we do not currently have results to fully assess the extent to which value

degrades (or doesn’t). In any case the expressivity of the CHiMP model enables a simple

solution: introduce new or stricter filtering by increasing the number and stringency of

constraints.

4.4 Discussion and Conclusion

In progressing from a generalizing system to a filtration system, our results provide meaningful

insight into two important questions relating to Ventura’s spectrum of creative systems:

1. For the filtration level of the spectrum, what challenges are CC systems likely to

encounter?

35

Figure 4.5: The effects of sequence length on the number of total solutions generated by each
model with a fixed training set size of 300 sentences. Both models are constrained such that
each word in a sequence starts with the same letter; counts of total solutions are averaged
over 26 runs (each run using a different letter from the English alphabet). We see that as
the sequence length increases, total solutions for the CHiMP model increases exponentially
(given the logarithmic scale) whereas the CoMP model stagnates.

Figure 4.6: The effects of training corpus size (number of training sentences) on the number
of total solutions generated by each model with a fixed sequence length of 3. Both models
are constrained such that each word in a sequence starts with the same letter; counts of
total solutions are averaged over 26 runs (each run using a different letter from the English
alphabet). The total solutions of both models increase in an almost parallel way; however, at
10K training sentences, CHiMP well exceeds 100M total solutions which contrasts CoMP at
1000 total solutions.

36

2. What suggestions can be made to overcome these challenges?

A significant challenge for CC systems attempting to transition to a filtration system is as

more constraints (or filters) are put on the system, the solution space diminishes to the point

of being too small to filter. As demonstrated in the CoMP model (Figure 4.5), the insufficient

solution space prevents being able to apply more constraints and filters to produce higher

quality artefacts.

The problem is not specific to our results or to Markov models. Filtering, by nature,

reduces the solution space. As shown in Figure 4.3, any CC system with low generalization

may fail to have a usable solution space after filtering.

Greater generalization can address the aforementioned problem. We see from our

results that our model with greater generalization, CHiMP, excels in solution space size even

as constraints are added (see Figure 4.5). The primary difference between CoMP and CHiMP

is an added layer of abstraction in CHiMP that affords greater generalization. The solution

to a diminished solution space is to increase the level of abstraction in the model. This

increases the generalization ability of the model and results in a solution space substantial

enough to “survive” filtering.

Increased constraints allow for greater creativity and quality because the system can

use constraints to explicitly articulate and enforce the system’s goals and intentions. For

example, in Markov models, increasing the Markov order (a form of adding more constraints)

significantly improves the coherency of natural language, but the solution space is heavily

diminished. With the CHiMP model, the solution space is sufficiently enlarged to avoid these

devastating consequences to the solution space. Besides changes to the Markov order, other

possibilities open up for using constraints to filter results to further improve quality, including

semantic constraints, structural constraints, and even more complex n-ary constraints. It is

also often the case that constraints can be easily described in human-interpretable language,

enabling the system to provide framing for its creative behavior, contributing to an increased

perception of creativity in CC systems [11].

37

It is important to acknowledge the negative consequences of increasing the general-

ization in a learning model. In particular, generalization decouples dependencies between

variables which can result in a loss of information during variable assignment. For example,

generalizing to a hidden Markov model takes a significant toll on language coherence. In

short, the novelty achieved by generalization comes with a trade-off in value. We hypothesize

that this deterioration can be offset in the application of filters to preserve the information

lost. We plan to examine this issue in future work.

Through developing a system (CHiMP) that more effectively achieves filtration, we

have discovered insights into the challenges present in the leap from generalization to filtration

and how to overcome them. The challenge of diminishing solution spaces can be overcome by

amplifying the generalizing ability of the system through abstraction. Having realized the

leap from generalization to filtration, the community is now poised to address the challenge

of making the subsequent leaps along Ventura’s spectrum of creative systems, advancing past

filtration into inception and ultimately creation.

38

Chapter 5

Probabilistic Generation of Sequences Under Constraints

This paper was presented at i-ETC 2020 and published in the conference proceedings pp.

135–140

Abstract

There is growing interest in the ability to generate natural and meaningful sequences (e.g., in

domains such as language or music). Many existing sequence generation models, including

Markov and neural algorithms, capture local coherence, but have no mechanism for applying

the structural constraints that are so often essential for the development of meaning. We

describe a novel solution to this problem which combines hidden Markov models with

constraints, allowing sequences which obey user-defined constraints to be generated according

to data-driven probability distributions. Compared to other constrained probabilistic solutions,

our Constrained Hidden Markov Process (CHiMP) has significantly greater expressivity,

allowing the user to generate constrained sequences that are longer and which have more

numerous structural constraints.

Source code is available at https: // github. com/ brandonbiggs/ Chimp

5.1 Introduction

Sequence generation is a common task in the field of artificial intelligence, particularly for

domains such as music, procedural content generation, natural language generation, etc.

Models used to generate sequences are trained on a corpus and are then iteratively sampled

39

https://github.com/brandonbiggs/Chimp

using some probabilistic distribution to generate a sequence of words. Many generative

models (such as n-gram, Markov, and recurrent neural models) use previously generated

tokens in the sequence to influence which future tokens are generated; however, they make

no guarantee as to what a particular token will be [23, 51]. The stochastic nature of these

models is desirable for many types of problems where generalization beyond the training

corpus is essential to the generation of novel and yet coherent sequences.

Stochasticity becomes problematic, however, when needing to generate sequences

whose meaning relies on structure. Music, for example, progresses sequentially; notes are

followed by more notes. However, to elevate a musical phrase to be something interesting,

higher features such as motifs need to be present in the sequence [1, 38]. Purely stochastic

models have no way of ensuring that a motif or repeated pattern is generated in a longer

musical phrase. Likewise coherent English sentences require proper subject-verb and noun-

pronoun agreements, possibly between distant sequence positions. Quality generation of

English sentences are important to any natural language application, but are increasingly in

demand for applications such as virtual assistants or procedural content generation [32].

A common solution to the lack of structure in sequential data models is to combine

these models with constraints. Constrained Markov processes in particular have been very

successful at imposing structure when combined with constraints [2]. These models are

capable of imposing structure in the form of unary constraints. For example, rhymes can

be created by constraining words at different positions to belong to the same rhyme group.

They have also been used in music generation [42] and to constrain against plagiarism [43].

A significant and well-known drawback of constrained Markov models (and constrained

models in general) is the inability to find satisfying solutions when constraints become

numerous. This is due largely to the high coupling between states in a Markov process which

causes changes in the state space at one position to directly and significantly affect the state

space at neighboring positions. As more constraints are added, the diminishing state space

problem is compounded to the point where the model is not able to find sequences that

40

satisfy both the Markov constraints (i.e., state sequences allowed by the Markov transitions)

and the unary constraints.

To address these shortcomings, we propose a novel solution to the constrained sequence

generation problem that uses a constrained hidden Markov process (CHiMP) model. We

demonstrate how the increased expressivity that emerges from hidden Markov processes with

respect to non-hidden Markov processes can be similarly applied to a constrained Markov

model in order to vastly increase the solution space for any constrained sequence generation

problem. Lastly we provide a comparative analysis of these two models on a real-world

sequence generation problem as a demonstration of the improved expressivity of the CHiMP

model over other constrained Markov processes.

5.2 Related Work

Markov models (which are also very similar to n-gram models) are ideal for sequence

generation; however, other types of models are commonly used for sequence generation.

Neural networks in the form of recurrent neural networks (RNNs) can be used to repeatedly

predict (i.e., generate) words in a sequence. RNNs differ from Markov models in that they are

“fuzzy”, meaning they perform higher-dimensional interpolation between training instances for

their predictions [23]. This allows RNNs to synthesize and use their training data in a more

complex way compared to Markov models. However, the fuzzy aspect of RNNs means that

the model makes no guarantees about a generated sequence. For a generated English sentence,

an RNN may exhibit a comprehension of a complex interaction present in the training data,

but the longer sequence generated fails to satisfy subject-verb agreement. Combining RNNs

with constraints is thus an area of ongoing research [24].

Long Short-term Memory (LSTM) are a variant of RNNs designed specificially to

maintain a longer term memory about tokens that the model has previously generated [23].

LSTMs use multiple neural networks and memory cells to achieve this increased ability to

remember inputs over longer periods in a sequence. This allows LSTMs to display a better

41

understanding of lasting structure and patterns in a sequence over RNNs. An LSTM will

have an easier time replicating a desired larger structure such as subject-verb agreement,

however the model does not guarantee such structures will emerge.

Markov processes generate sequences by looking at the previous state (or previous

n states for an n-order Markov model) and randomly sampling according to trained transi-

tion/emission probabilities to generate a new token. The process is iterated to generate a

full sequence of tokens. The simplicity of these models lends to them being easy to imple-

ment and efficient to run [42]. Examples of Markov implementations include systems that

react interactively to music input [41] and text-to-speech synthesis where speech waveform

generation is generated via a hidden Markov model [62].

When generating sequences, Markov processes produce sequences that share a common

style with the data the model was trained on. In the context of natural language synthesis,

the style sharing properties of Markov processes can be exploited to change speaker identities,

emotion of the speech, and the cadence of the speaker [62].

The defining feature of a Markov process is that it adheres to the Markov property

which is that the next state in the sequence is determined only by the previous state to it,

i.e.,

p(si|s1, . . . , si−1) = p(si|si−1).

In the context of sequence generation, the Markov property is well-suited to domains such as

music where, aside from higher features, the next note relies on the previous note (i.e., music

exhibits Markovian aspects) [7].

Previous efforts have been made to combine probabilistic models with constraint

satisfaction. Pachet et al. introduce constrained Markov process (which we will refer to as

CoMP) as a method for applying user-defined constraints to a non-hidden Markov model

[42]. Likewise, factor graphs combine a non-hidden Markov process with an automaton

to create a system functionally equivalent to the one introduced by Pachet et al. [45]. A

weakness in these models is that their ability to find satisfying solutions diminishes quickly

42

as constraints are added or made more stringent. We quantitatively analyze this limitation

in the applications section of this paper.

The constrained hidden Markov process (CHiMP) maintains the strengths of the

CoMP and Factor graph models, in guaranteeing the generation of constraint-satisfying

solutions, while significantly expanding the solution space to mitigate the limitations posed

in these latter models by adding numerous or strict constraints.

5.3 Methods

The primary difference between the CoMP model and the CHiMP model is that the former

derives from a Markov model whereas the latter derives from a hidden Markov model. As

such, we will review these two models first and then look at how constraints are added to

these models to form the CoMP and CHiMP models

As a running example we will consider the problem of generating a sequence with the

following set of constraints (hereafter referred to as the set C):

1. The sequence must be four words in length

2. The first word rhymes with red

3. The last word is red

Furthermore the sequence of words must be generated according to probabilities derived from

the following training corpus (note that for the sake of simplicity, and because it is irrelevant

in the context of the constrained models, we purposely ignore end-of-sentence tags):

NNP RB VBZ NN

Ted now likes green

NNP VBZ NN

Mary likes red

43

NNP RB VBZ NN

Mary now loves red

NNP VBZ NNP RB

Fred sees Mary sometimes

The tokens NN, RB, VBZ, and NNP represent part-of-speech (POS) tags equating respectively

to a noun, an adverb, a verb in 3rd-person singular present, and a proper noun singular. For

purposes of equal comparison all models are required to incorporate both POS and words

into their state spaces. Markov models do this by combining both POS and words into a

single state space; hidden Markov models explicitly separate POS and words into hidden and

observed state spaces respectively.

Markov Processes

A Markov model is defined as a triple M = (SM , πM , TM) where SM defines a finite set of

observed states or symbols; πM : SM −→ [0, 1] represents the initial probabilities for states;

and TM : SM × SM −→ [0, 1] represents the transition probabilities between states. Each of

πM and TM represent a distribution and should thus sum to 1.0.

For the training corpus above, M = (SM , πM , TM) where SM = {(NNP, Ted), (RB,

now), (VBZ, likes), (NN, green), (NNP, Mary), (NN, red), (VBZ, loves), (NNP, Fred),

(VBZ, sees), (RB, sometimes)}, and πM and TM are defined as follows:

πM

(NNP,Ted) 1/4
(NNP,Mary) 2/4
(NNP,Fred) 1/4

else 0

44

TM (N
N
P

,
T
ed

)

(R
B

,
n
ow

)

(V
B
Z

,
li
ke
s)

(N
N

,
gr
ee
n

)

(N
N
P

,
M
ar
y

)

(N
N

,
re
d

)

(V
B
Z

,
lo
ve
s)

(N
N
P

,
F
re
d

)

(V
B
Z

,
se
es

)

(R
B

,
so
m
et
im

es
)

(NNP, Ted) 0 1 0 0 0 0 0 0 0 0
(RB, now) 0 0 1

2
0 0 0 1

2
0 0 0

(VBZ, likes) 0 0 0 1
2

0 1
2

0 0 0 0
(NN, green) 0 0 0 0 0 0 0 0 0 0
(NNP, Mary) 0 1

3
1
3

0 0 0 0 0 0 1
3

(NN, red) 0 0 0 0 0 0 0 0 0 0
(VBZ, loves) 0 0 0 0 0 1 0 0 0 0
(NNP, Fred) 0 0 0 0 0 0 0 0 1 0
(VBZ, sees) 0 0 0 0 1 0 0 0 0 0
(RB, sometimes) 0 0 0 0 0 0 0 0 0 0

We generate a sequence s = {s1, . . . , sn} using M as follows:

1. Sample an initial state s1 ∈ SM according to πM

2. While sequence not finished,

(a) Sample the next state si ∈ SM given si−1 according to TM

The sequence finishes either when an end-of-sequence token is sampled or when the sequence

has reached some pre-determined length (as is the case in the CoMP and CHiMP models).

A Markov model M generates a sequence s = {s1, . . . , sn} of states from SM with

probability

PM(s) = πM(s1)
n∏

i=1

TM(si−1, si).

Trained on the example corpus, M generates the following sequences with the proba-

bilities shown:

45

NNP VBZ NN

Mary likes green

1/2 ×1/3 ×1/2 = 1/12

NNP VBZ NNP RB

Fred sees Mary now

1/4 ×1 ×1 ×1/3 = 1/12

Note that although the Markov process generates sequences according to probabilities

derived from the training corpus, it generates sequences that fail to meet constraints as

defined by C. The probability mass devoted to sequences which obey constraints in C is

relatively small.

Hidden Markov Processes

A hidden Markov model is defined a five-tuple H = (SH , VH , πH , TH , EH) where SH defines a

finite set of (hidden) states; VH is a finite set of observed states or symbols; πH : SH −→ [0, 1]

represents the initial probabilities for hidden states; TH : SH × SH −→ [0, 1] represents

the transition probabilities between hidden states; and E : SH × VH −→ [0, 1] defines the

probability of emitting a symbol given a particular hidden state. Each of πH , TH , and

EH represent a distribution and should thus sum to 1.0. For the training corpus above,

SH = {NN,RB, V BZ,NNP}, VH = {Ted, now, likes, green, Mary, red, loves, Fred, sees,

sometimes}, and πH , TH , and EH defined as follows:

πH

NN 0
VBZ 0
RB 0
NNP 1

46

TH NN VBZ RB NNP
NN 0 0 0 0
VBZ 3/4 0 0 1/4
RB 0 1 0 0
NNP 0 2/5 3/5 0

EH T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NNP 1/5 0 0 0 3/5 0 0 1/5 0 0
RB 0 2/3 0 0 0 0 0 0 0 1/3
VBZ 0 0 1/2 0 0 0 1/4 0 1/4 0
NN 0 0 0 1/3 0 2/3 0 0 0 0

To generate a sequence s = {(s1, v1), . . . , (sn, vn)}, H follows the procedure:

1. Sample an initial hidden state s1 ∈ SH according to πH

2. Given s1, sample a symbol v1 ∈ VH according to EH

3. While sequence not finished,

(a) Sample the next hidden state si ∈ SH given si−1 according to TH

(b) Sample the next symbol vi ∈ VH given si according to EH

The sequence finishes either when an end-of-sequence token is sampled or when the sequence

has reached some pre-determined length.

Using H, a sequence s = {(s1, v1), . . . , (sn, vn)} is generated with probability

PH(s) = πH(s1)EH(s1, v1)
n∏

i=2

TH(si−1, si)EH(si, vi)

Trained on the example corpus, H generates the following sequences with the probabilities

shown:

47

1 ×2/5 ×3/4

NNP VBZ NN

Ted likes green

×1/5 ×1/2 ×1/3 = 1/100

1 ×3/5 ×1 ×1/4

NNP RB VBZ NNP

Mary sometimes loves Fred

×3/5 ×1/3 ×1/4 ×1/5 = 3/2000

Note again that although this model will generate sequences according to the correct prob-

ability distribution, the probability mass devoted to sequences which match our desired

constraints is relatively small.

It is important to note that, trained on the same corpus, the solution space of H

is a superset of the solution space for M (e.g., the example solutions shown for M can be

generated by H, but the reverse is not true). This increased expressivity comes purely as a

result of adding the hidden layer in H. In broad terms, the solution space of M is O(|SM |n)

(where n is the length of the sequence) whereas the solution space of H is O(|SH |n × |VH |n).

Shifting from a Markov to a hidden Markov model increases the size of the solution space

by an exponential factor, |VH |n. This enhanced expressivity of hidden Markov models with

respect to non-hidden models is one of the keys that makes the CHiMP model more robust

when adding constraints: an exponentially larger solution space significantly increases the

chances of maintaining satisfying solutions when pruned by constraints.

48

Figure 5.1: A constrained Markov process (CoMP) with constraints requiring the first token
rhyme with red and the last token be red. Pruned states and updated transitions are the
result of applying constraints and then enforcing arc-consistency.

Constrained Markov Processes

At a high-level, a CoMP model M̃ , derived from a Markov model M and a set of constraints

C, can be thought of as a Markov model that creates a copy Ti,j of T for each pair of sequence

positions (i, j) in the sequence to be generated and then modifies each Ti,j to ensure that

constraints in C applying to positions i and/or j are met (e.g., zero out probabilities in T3,4

transitioning to any state s4 ̸=red). This is demonstrated in Fig. 5.1. The CoMP model

M̃ applies arc-consistency and re-normalization to sample constraint-satisfying solutions s

with probability PM̃(s) that differs from PM(s) by a constant factor. Because this model is

a form of tree-structured CSP, arc-consistency can be enforced in a single pass to ensure

probabilities sum to 1.0 and that relative probabilities for constraint-satisfying solutions are

maintained (for the details on this algorithm and the algorithm for re-normalization see [42]).

Because the transition probabilities can vary by position, the CoMP model is sometimes

referred to as a non-homogeneous Markov model.

49

Given the training corpus and constraint set C, a trained CoMP model (as shown in

Fig. 5.1) is able to generate only two solutions:

Sequence s PM(s) PM̃(s)

Ted now likes red. 1/16 1/3

Ted now loves red. 2/16 2/3

Note that M̃ only generates constrain-satisfying solutions and that these solutions are

generated according to probabilities derived from our training corpus. The challenge, however,

is that these are the only two solutions. In general, the number of satisfying solutions for M̃

is very few compared to what will be shown next for the CHiMP model.

Constrained Hidden Markov Processes

The CHiMP model follows a pattern similar to that of the CoMP model except that instead of

combining a non-hidden Markov model with a set of constraints C, the CHiMP model combines

a hidden Markov model with C. Given a hidden Markov model H = (SH , VH , πH , TH , EH) and

a set of constraints C, a constrained hidden Markov process H̃ generates sequences of hidden

and/or observed states that obey the constraints in C. H̃, like M̃ , allows for probabilities to

vary by position. The difference is that CHiMP replicates and modifies both TH and EH

probabilities for each position (see Fig. 5.2). After applying constraints, arc-consistency is

enforced to remove nodes that do not lead to a solution. As in M̃ , arc-consistency measures

can be enforced in H̃ in a single pass. All matrices are re-normalized to ensure that the

distributions PH̃ and PH differ by only a constant factor for satisfying solutions.

Given the training corpus and our rhyming constraints, the CHiMP model is able to

generate the following 12 solutions, each with their respective probabilities.

50

Figure 5.2: A high-level schematic of a constrained hidden Markov process (CHiMP) of
length 4 constrained so that the last word is “red” and the first word rhymes with “red”.
Each column represents a position in the sequence to be generated. Each node represents
a hidden state (i.e., part-of-speech) and a probability distribution for the observed states
(i.e., words) that can be generated from that hidden state. By pruning observed states that
are disallowed by constraints and then adjusting probabilities to maintain arc-consistency,
the resulting model generates constraint-satisfying solutions with probability relative to the
original probability distribution. Hidden states pruned directly from applying constraints are
indicated by dark grey nodes and states pruned during arc-consistency are indicated by light
grey nodes.

51

Solutions Probabilities

Ted now likes red. (4/200)

Ted now loves red. (2/200)

Ted now sees red. (2/200)

Ted sometimes likes red. (2/200)

Ted sometimes loves red. (1/200)

Ted sometimes sees red. (1/200)

Fred now likes red. (4/200)

Fred now loves red. (2/200)

Fred now sees red. (2/200)

Fred sometimes likes red. (2/200)

Fred sometimes loves red. (1/200)

Fred sometimes sees red. (1/200)

By including hidden states in the constrained model H̃, the increased solution space

results in the model being able to generate significantly more satisfying solutions than M̃ . A

second added benefit is afforded by the addition of hidden states: because constraints are

applied on observed states and because there is no direct influence between observed states

in H, there is an increased degree of separation between constraints. This helps to avoid the

compounding effect of diminished state spaces resulting from individual constraints.

5.4 Applications

To demonstrate the improvements of the CHiMP model over the CoMP model, we compared

the results of each model trained on the Corpus of Contemporary American English (COCA)

[16] and provided the same set of constraints. In particular, we selected training sets from

the 2012 fiction portion of COCA and constrained each model to only output sequences in

52

Figure 5.3: The effects of sequence length (and consequently number of constraints) on
generalizability (i.e., number of unique sequences out of 10k sampled solutions) for a fixed
random training set of 100 sentences. Each model is constrained such that words start with
the same letter, and counts are averaged over 26 runs (a different letter constraint for each
run). The added constraints from increasing sequence length have a compounding limiting
effect in the CoMP model, whereas the abstraction of the CHiMP model serves to decouple
constraints to avoid bottlenecks.

which the first letter of each word began with the same letter (e.g., a tongue-twister). We

chose this problem because it represents a fairly general example of constrained sequence

generation that is easily adapted to sequences of varying lengths. Results are averaged over

26 instances of the problem with each instance having constraints defined with a different

letter of the English alphabet.

Our experiments were two-fold. First, we examined the number of sequences generated

by each model as a function of sequence length. Since each word is constrained to start

with a specified letter, as the sentence length increases, so does the number of constraints.

This experiment compares how the models are affected by increasingly stringent constraints.

Second, we examined the number of sequences generated by each model as a function of the

size of the training corpus. Our motivation here is to compare how the models are affected

by an increasingly restricted data set. In all cases, both models were trained on the same

subset of data.

53

Figure 5.4: The effects of training corpus size on generalizability of the CHiMP (blue) and
CoMP (red) models. Generalizability is measured as number of unique sequences out of 100k
sampled solutions. Each model is constrained such that words start with the same letter,
and counts are averaged over 26 runs (a different letter constraint for each run). Shades show
the effects of varying the sequence length (and consequently the number of constraints) on
generalizability. The CHiMP model consistently generates more unique satisfying solutions
than the CoMP model and is relatively immune to the effects of training set size or number
of constraints.

In Fig. 5.3, we see that as the sentence length increases and, by consequence of our

problem, the constraints become more numerous, the CoMP model generate less and less

unique sentences – even unable to generate sentences past a sentence length of 6 (for a fixed

corpus size of 100 sentences). Each constraint added further tightens the restrictions put on

possible solutions that CoMP can find. In contrast, CHiMP maintains expressivity (i.e., the

ability to generate unique sentences) as sentence length grows and constraints are added.

In Fig. 5.4, CHiMP remains expressive even when trained on a very small training

corpus (25 sentences). The trend of unique sentence averages increases as the training set

increases until reaching the maximum number of sampled solutions (100K). CoMP’s ability

to generate novel and unique sentences is severely limited according to the size of its training

set.

54

5.5 Conclusion

We have demonstrated through quantitative analysis that under increasingly stringent con-

straints and increasingly limited training data, constrained hidden Markov processes are

an ideal solution for maintaining reasonable solution spaces. It remains to be seen what

qualitative affect the CHiMP model has compared to the CoMP model in terms of the

coherence of generated sequences. Regardless, insofar as quality is reflected in the ability of

the model to add and respect more constraints, CHiMP maintains a significant advantage.

The diminished fear of adding constraints afforded by the CHiMP model is a significant

asset that opens many new and exciting avenues for research in sequence generation. Where

many problems are easily defined using constraints, the difficulty of generating structured

sequences shifts from the inability of the model to find solutions to challenging the system

designer to think of new and creative ways to derive and define constraints.

55

Chapter 6

Constrained Hidden Markov Processes for Sequence Generation

This paper will be submitted to AAAI 2023 in September 2022.

Abstract

There is growing interest in systems that generate natural and meaningful sequences. Many

existing sequence generation models, including Markov and neural algorithms, capture

local coherence but lack a mechanism for imposing structural constraints that are so often

essential for the development of meaning. We propose a novel solution to this problem that

combines hidden Markov models with constraints, allowing sequences that obey user-defined

constraints. Compared to other constrained, probabilistic solutions, our Constrained Hidden

Markov Process (CHiMP)1 has significantly larger solution spaces, allowing the user to

generate constrained sequences that have more numerous structural constraints. CHiMP also

demonstrates high sequence quality comparable to the constrained non-hidden Markov model

and the anticipation-RNN as assessed by a survey.

6.1 Introduction

Sequence generation is a task of interest in domains such as natural language, music [13],

game content [27], etc. Markov processes can be implemented to run efficiently enough for

complicated real-time tasks such as speech synthesis [62]. The efficiency of Markov processes

comes in part from the Markov hypothesis of limited memory which is that the next state of

1Source code is available at https: // github. com/ po-gl/ ConstrainedHiddenMarkovModel

56

https://github.com/po-gl/ConstrainedHiddenMarkovModel

a sequence depends only on the previous state. In terms of the probabilities of a sequence

x1, . . . , xL, the Markov hypothesis can be written as:

p(xi|x1, . . . , xi−1) = p(xi|xi−1)

The Markov hypothesis becomes an obstacle when trying to enforce unary constraints

upon a sequence. Fortunately, this obstacle has been overcome for non-hidden Markov

processes by Pachet et al. [42] which we will refer to as the constrained Markov process

(CoMP). Markov processes can be set up as constraint satisfaction problems (CSPs) in

which states can be removed that violate constraints, arc-consistency can be enforced to

guarantee solution paths, and transition probabilities normalized to ensure original probability

distributions. The solution they present is extended here for a general solution to constraining

hidden Markov processes.

To motivate why constraints are desired for sequences in the first place, consider the

importance of structure to generated sequences. Music, for example, progresses sequentially;

notes are followed by more notes. However, to elevate a musical phrase to be something

interesting, higher features such as motifs need to be present in the sequence [1, 38]. Likewise

coherent English sentences require proper subject-verb and noun-pronoun agreements, possibly

between distant sequence positions. Quality generation of English sentences are important to

any natural language application, but are increasingly in demand for applications such as

virtual assistants or procedural content generation [32].

This paper aims to propose a solution to constraining a hidden Markov process –

primarily based on extending the notion of the constrained Markov process from Pachet et

al. [42] to hidden Markov models. The proposed solution is the constrained hidden Markov

process (CHiMP). The methods described in this paper allow for a hidden Markov process,

with a set of unary constraints, to be re-compiled into a new model which is a constrained

hidden Markov process that is statistically equivalent to the original hidden Markov process.

The remainder of the paper is structured as follows: relevant related works are discussed, a

57

problem statement and running sentence generation example is introduced, the construction

of the model is described, model time complexities are justified, and the model is applied to

a two sequence generation problems where quantitative and qualitative results are presented.

6.2 Related Works

A general method for creating a constrained non-hidden Markov model has been described

by Pachet et al. where they apply the model to generating musical melodies [42]. Defining

attributes of their approach include leveraging arc-consistency to address the zero-frequency

problem common in random walk settings while maintaining the original probability distribu-

tion of the training set. Of course, the constrained non-hidden Markov model also respects

the Markov hypothesis when sampling generated sequences. We compare the results of the

proposed model with the model described by Pachet et al. [42].

The zero-frequency problem occurs in random walk settings when a token is chosen

for which there is no satisfying continuation of the sequence [10]. While this problem can

occur in any random walk setting, the problem is exacerbated when a model tries to satisfy

user-defined constraints. Prior work has shown that constrained models often contend with

diminishing solution space sizes when heavily constrained [21]. In dealing with the zero-

frequency problem, proposed solutions can involve restarting the random walk [18]. For the

non-hidden Markov model, Pachet et al. solved this problem by enforcing arc-consistency

when training the model. This ensures any path from any given token will lead to a satisfying

solution.

Factor graphs are functionally equivalent to the constrained non-hidden Markov model

in offering a probabilistic model that can satisfy user-defined constraints [45]. Both of these

models deal with diminishing solution space sizes for stringent constraint tasks.

Another model commonly applied to the task of sequence generation is the recurrent

neural network (RNN). RNNs are different from factor graphs and constrained non-hidden

Markov models in that they perform higher-dimensional interpolation of training instances

58

when making predictions [23]. This allows RNNs to exhibit more complex behavior through

generated sequences. Due to the more complex behavior, RNNs are not affected by the

zero-frequency problem as the probabilistic models are. However, RNNs typically do not make

guarantees of satisfying user-defined constraints. An anticipation-RNN [24] aims to enforce

unary constraints using a two stacked long short-term memory (LSTM) [23] architecture.

The anticipation-RNN achieves success in constraining Bach chorales to user-defined unary

constraints; however, the model does allow for generated sequences that do not satisfy

constraints and thus still does not make guarantees. For the anticipation-RNN, difficult or

“out-of-style” constraints can even have a poor constraint satisfaction rate (less than 50% of

generated sequences satisfy constraints) [24].

6.3 Problem Statement

The problem of interest is to generate fixed-length sequences that adhere to control constraints.

The proposed model aims to solve the problem of diminishing solution space sizes due to

increasing Markov orders or constraint requirements by using a hidden Markov process H

rather than non-hidden Markov model. It is also of interest that the model uses a random

walk or stochastic process approach and that the constrained hidden Markov process H̃

generate sequences on the same probability distribution as H.

As a running example we will consider the problem of generating a sequence with the

following set of constraints (hereafter referred to as the set C):

1. The sequence must be four words in length

2. The first word rhymes with red

3. The last word is red.

Furthermore the sequence of words must be generated according to probabilities derived from

the following training corpus (note that for the sake of simplicity, and because it is irrelevant

in the context of the constrained models, we purposely ignore end-of-sentence tags):

59

NNP RB VBZ NN

Ted now likes green

NNP VBZ NN

Mary likes red

NNP RB VBZ NN

Mary now loves red

NNP VBZ NNP RB

Fred sees Mary sometimes

The tokens NN, RB, VBZ, and NNP represent part-of-speech (POS) tags equating respectively

to a noun, an adverb, a verb in 3rd-person singular present, and a proper noun singular.

A hidden Markov process is defined as a 5-tuple H = (S,O, π,M,E) where S =

{s1, . . . , sn} is a set of hidden states; O = {o1, . . . , om} is a set of observations (or, if

the reader prefers, outputs); π : S → [0, 1] defines a set of initial state probabilities or

prior probabilities; M : S × S → [0, 1] defines a set of state transition probabilities; and

E : S ×O → [0, 1] defines a set of emission probabilities. A generated sequence x of length

L is defined by x = (x1, . . . , xL) where xi ∈ O. We define X as the set of all generated

sequences generated by H. Trained on the running example training corpus, a model H

would have the following transition and emission probabilities:

π
NN 0
VBZ 0
RB 0
NNP 1

60

M NN VBZ RB NNP
NN 0 0 0 0
VBZ 3/4 0 0 1/4
RB 0 1 0 0
NNP 0 2/5 3/5 0

E T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NNP 1/5 0 0 0 3/5 0 0 1/5 0 0
RB 0 2/3 0 0 0 0 0 0 0 1/3
VBZ 0 0 1/2 0 0 0 1/4 0 1/4 0
NN 0 0 0 1/3 0 2/3 0 0 0 0

A constrained hidden Markov process is defined as a 5-tuple H̃ = (S,O, π, M̃, Ẽ)

where S = {s1, . . . , sn} is a set of hidden states; O = {o1, . . . , om} is a set of observations;

π : S → [0, 1] defines a set of initial state probabilities or prior probabilities; M̃ (i) : S × S →

[0, 1] defines each set of state transition probabilities for 1 < i < L and M̃ (0) = π; and

Ẽ(i) : S ×O → [0, 1] defines each set of emission probabilities for 1 ≤ i < L. The difference

between H̃ and H is that H̃ has a series of L transition and emission matrices M̃ (i) and Ẽ(i)

respectively.

H̃ is constructed with the use of unary constraints on the transition and emission

probability matrices. We define the set of constraints on the hidden states at position i as

CM
(i) for 1 ≤ i < L and L is the length of the sequence to generate. We define the set of

constraints on the observed states at position i as CE
(i) for 1 ≤ i < L. The set of constraints

at a position specify what hidden or observed states are allowed, i.e., what states have a

non-zero probability. In the running example, the constraint that the first word rhymes with

red is specified by CE
(0) and the constraint that the last word is red is specified by CE

(3).

61

Using these constraints, we denote the set of solutions generated by H̃ as XC . Like

CoMP, CHiMP should satisfy the following properties:

(I) pH̃(x) = 0 for x /∈ XC

(II) pH̃(x) = α · pH(x) for x ∈ XC

Property (I) states that H̃ generates exactly the sequences x ∈ XC , i.e., the model satisfies

the control constraints. Property (II) states that the model H̃ has the same probability

distribution as its non-constrained variant H for sequences in XC within some constant factor

α We prove that CHiMP satisfies these properties in Section 6.4.5.

Section 6.4 will describe the construction of the constrained hidden Markov process

H̃ from an original model H such that H̃ satisfies the two properties.

6.4 Construction of the Constrained Model H̃

Like Pachet et al. [42], we construct the constrained model H̃ by applying two transformations

to our original hidden Markov model. The first transformation is to remove states that

are directly or indirectly incompatible with the constraints. Directly incompatible states

are states that constraints specifically forbid, and indirectly incompatible states are states

that do not lead to a solution. Indirectly incompatible states are removed while enforcing

arc-consistency. The second transformation is to normalize the model. After removing nodes,

the matrices in the model become non-stochastic (matrix rows no longer add up to one).

Normalization brings the matrices back to a stochastic state.

6.4.1 Extract Matrices from H

When a hidden Markov process is constructed, the end product is a transition matrix and an

emission matrix. In constructing CHiMP, the process will be modeled by a series of L transition

and emission matrices. To construct H̃, a series of intermediate matrices Z(0), . . . , Z(L−1) and

62

B(0), . . . , B(L−1) are required to store the transition and emission probabilities respectively as

states are removed when applying constraints and enforcing arc-consistency. The algorithm

to initialize the intermediate matrices is as follows:

Z(0) ←− π

Z(i) ←−M,∀i = 1, . . . , L− 1

B(i) ←− E,∀i = 0, . . . , L− 1

meaning that the transition and emission probabilities of the original model H are copied

L− 1 and L times respectively into the intermediate matrices.

6.4.2 Applying Constraints

The first transformation in constructing H̃ is to apply the control constraints CM
(i) and CE

(i)

to the state spaces of the transition matrices V1, . . . , VL and the state spaces of emission

matrices U1, . . . , UL. For each constraint CM
(i) or CE

(i), we remove hidden states as ∈ S or

observed states ae ∈ O that are forbidden by the constraint from Vi or Ui respectively.

Now for each hidden state as ∈ S that we removed from the domain Vi, we set the

transitions to those words as zero in our list of transition matrices Z(i). Likewise we zero out

probabilities in the emission probability matrices B(i) for each observed state ae ∈ O that is

removed from the domain Ui. If all the emission probabilities for a given hidden state are all

zero, then that hidden state is also removed from the domain Vi and zero out the transition to

the hidden state. In our running example, the intermediate transition and emission matrices

after initializing and applying constraints are as follows:

Z(0) = π
NN 0
VBZ 0
RB 0
NNP 1

63

Z(1), Z(2), Z(3) NN VBZ RB NNP
NN 0 0 0 0
VBZ 3/4 0 0 1/4
RB 0 1 0 0
NNP 0 2/5 3/5 0

B(0) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 1/5 0 0 0 0 0 0 1/5 0 0

B(1), B(2) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 1/3 0 2/3 0 0 0 0
VBZ 0 0 1/2 0 0 0 1/4 0 1/4 0
RB 0 2/3 0 0 0 0 0 0 0 1/3
NNP 1/5 0 0 0 3/5 0 0 1/5 0 0

B(3) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 2/3 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 0 0 0 0 0 0 0 0 0 0

The constraints for the example only applying to the emission probabilities, i.e., CM is

empty while CE has constraints for the first and last sequence position. Note that by zeroing

some probabilities, the distribution no longer sums to 1.0 and will need to be normalized in

order to satisfy property (II).

64

6.4.3 Enforcing Arc-consistency

Now that constraints have been applied and transition states removed, there is the possibility

that a random walk will run into a dead-end (a state that has no transition possibilities from

it). These dead-end states are removed through a process called enforcing arc-consistency.

General algorithms for enforcing arc-consistency have been described [34], but enforcing

arc-consistency gives the following:

∀a ∈ Vi,∃b ∈ Vi+1 such that CM
(i)(a, b) = true

meaning that for all hidden states in the domain Vi there exists a hidden state in the next

domain Vi+1 such that the constraint at that position CM
(i) is satisfied. This process can be

set up in the form of a tree-structured CSP and computed efficiently in a single pass without

any backtracking. In practice, the process of enforcing arc-consistency zeros out transition

probabilities to hidden states that lead to dead-end states.

The enforcement of arc-consistency in the constrained hidden Markov process solves the

zero-frequency problem for the model. Given any or no constraints, enforcing arc-consistency

ensures that an item leading to an unsatisfying continuation of the sequence cannot be chosen.

After the enforcement of arc-consistency, the intermediate transition and emission

matrices for our sentence generation example will be as follows:

Z(0) = π
NN 0
VBZ 0
RB 0
NNP 1

Z(1) NN VBZ RB NNP
NN 0 0 0 0
VBZ 0 0 0 0
RB 0 0 0 0
NNP 0 0 3/5 0

Z(2) NN VBZ RB NNP
NN 0 0 0 0
VBZ 0 0 0 0
RB 0 1 0 0
NNP 0 0 0 0

Z(3) NN VBZ RB NNP
NN 0 0 0 0
VBZ 3/4 0 0 0
RB 0 0 0 0
NNP 0 0 0 0

65

B(0) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 1/5 0 0 0 0 0 0 1/5 0 0

B(1) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 2/3 0 0 0 0 0 0 0 1/3
NNP 0 0 0 0 0 0 0 0 0 0

B(2) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 1/2 0 0 0 1/4 0 1/4 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 0 0 0 0 0 0 0 0 0 0

B(3) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 2/3 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 0 0 0 0 0 0 0 0 0 0

66

6.4.4 Normalization

We now construct the final matrices M̃ (0), . . . , M̃ (L−1) by normalizing the intermediate

matrices Z(0), . . . , Z(L−1). Normalizing the matrices individually would make the matrices

stochastic; however, they would fail to satisfy property (II) and as such the constrained model

H̃ would not have the same probability distribution as the original model H.

The method to normalize while satisfying property (II) is based on the method to

normalize a constrained non-hidden Markov process [42]. The process is another right-to-left

sweep where the last matrix Z(L−1) is individually normalized and then the normalization is

propagated back up to the prior matrix Z(0). Pachet et al describes the motivation for this

process as propagating the perturbations in the matrices induced by individually normalizing

matrices from right-to-left [42].

For a hidden Markov process, normalizing the transition probability matrices Z(i) is

similar to normalizing matrices for a non-hidden Markov process; however, perturbations

in the emission probabilities B(i) need to also be propagated. Perturbations in the emission

probabilities are propagated through the matrices with the inclusion of a β factor. Emission

probabilities themselves are calculated as Ẽ(i).

The elements in the normalized matrices M̃ (i) and Ẽ(i) are given by the recurrence

relations below:

Ẽ
(i)
kx =

B
(i)
kx

β
(i)
k

, β
(i)
k =

|O|∑
x=1

B
(i)
kx , 0 ≤ i < L− 1

M̃
(L−1)
jk =

β
(L−1)
k z

(L−1)
jk

α
(L−1)
j

, α
(L−1)
j =

|S|∑
k=1

β
(L−1)
k z

(L−1)
jk , 0 ≤ i < L− 1

M̃
(i)
jk =

β
(i)
k α

(i+1)
k z

(i)
jk

α
(i)
j

, α
(i)
j =

|S|∑
k=1

β
(i)
k α

(i+1)
k z

(i)
jk , 0 ≤ i < L− 1

M̃
(0)
k =

β
(0)
k α

(1)
k z

(0)
k

α(0)
, α(0) =

|S|∑
k=1

β
(0)
k α

(1)
k z

(0)
k , 0 ≤ i < L− 1

The final matrices for the running example are utilized in Figure 6.1 and are as follows:

67

M̃ (0) = π

NN 0

VBZ 0

RB 0

NNP 1

M̃ (1) NN VBZ RB NNP

NN 0 0 0 0

VBZ 0 0 0 0

RB 0 0 0 0

NNP 0 0 1 0

M̃ (2) NN VBZ RB NNP
NN 0 0 0 0
VBZ 0 0 0 0
RB 0 1 0 0
NNP 0 0 0 0

M̃ (3) NN VBZ RB NNP
NN 0 0 0 0
VBZ 1 0 0 0
RB 0 0 0 0
NNP 0 0 0 0

Ẽ(0) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es
NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 1/2 0 0 0 0 0 0 1/2 0 0

Ẽ(1) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 2/3 0 0 0 0 0 0 0 1/3
NNP 0 0 0 0 0 0 0 0 0 0

Ẽ(2) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 0 0 0 0 0
VBZ 0 0 1/2 0 0 0 1/4 0 1/4 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 0 0 0 0 0 0 0 0 0 0

68

Ẽ(3) T
ed

n
ow

li
ke
s

gr
ee
n

M
ar
y

re
d

lo
ve
s

F
re
d

se
es

so
m
et
im

es

NN 0 0 0 0 0 1 0 0 0 0
VBZ 0 0 0 0 0 0 0 0 0 0
RB 0 0 0 0 0 0 0 0 0 0
NNP 0 0 0 0 0 0 0 0 0 0

6.4.5 Proof of Properties (I) and (II)

We show through the following proof that the final normalized matrices satisfy property (I)

and (II).

Proposition: The stochastic matrices M̃ (i) within the constrained hidden Markov process H̃

satisfy property (I) and (II).

Proof. By construction, the matrices are stochastic, i.e., each row sums to 1. The probability

that H̃ will generate a given sequence x = (x1, . . . , xL) is:

pH̃(s) = pH̃(s1) · pH̃(s2|s1) · . . . · pH̃(sL|sL−1)

= M̃
(0)
k1
· M̃ (1)

k1,k2
· . . . · M̃ (L−1)

kL−1,kL

=
1

α(0)
· β(0)

k1
· z(0)k1

· β(1)
k1,k2
· z(1)k1,k2

· . . . · β(L−1)
kL−1,kL

· z(L−1)
kL−1,kL

where ki is the index of si in the alphabet S. Therefore, by the construction of the matrices

M̃ (i):

(I) pH̃(x) = 0 for x /∈ XC

(II) pH̃(x) =
1

a(0)
· pH(x) for x ∈ XC

69

Figure 6.1: A high-level schematic of a constrained hidden Markov process (CHiMP) of
length 4 constrained so that the last word is “red” and the first word rhymes with “red”.
Each column represents a position in the sequence to be generated. Each node represents
a hidden state (i.e., part-of-speech) and a probability distribution for the observed states
(i.e., words) that can be generated from that hidden state. By pruning observed states that
are disallowed by constraints and then adjusting probabilities to maintain arc-consistency,
the resulting model generates constraint-satisfying solutions with probability relative to the
original probability distribution. Hidden states pruned directly from applying constraints are
indicated by dark grey nodes and states pruned during arc-consistency are indicated by light
grey nodes.

70

6.5 Time complexity

Constrained hidden Markov process training and sequence generation can be computed

efficiently, enabling the possibility of using this model for real-time applications. The process

of training, constraint satisfaction, arc-consistency enforcement, and normalization can be

computed in a single pass. Sequence generation is a simple random walk that can be computed

in linear time. The time complexities for the constrained hidden Markov process are as

follows:

Time to train model: O(tc0n +
L−1∑
i=1

(tcin + n2))

Time to generate from model: O(Ln)

where tci denotes the time it takes to process a state on the constraints CM
(i) and CE

(i) at

sequence position i and n is the size of the alphabet with the assumption that |S| = |O| = n.

6.5.1 Proof

Proof. We will first prove the time to train the model which can be done in the following 4

steps:

1. construct the original hidden Markov model H

2. copy H to intermediate matrices Z(i)

3. apply constraints and enforce arc-consistency

4. normalize matrices using the recurrence relations.

The first step of training the hidden Markov model on data can be done in O(n2) time; linear

time to build the transition and emission matrices and O(n2) time to normalize the matrices.

The second step can be ignored as far as time complexity since the original model can simply

71

be referenced as we build the matrices for H̃. The third step will take O(
∑L−1

i=1 (tcin + n2))

time where for each position 1 to L − 1, it will take tcin time to apply constraints in the

matrix and n2 time to enforce arc-consistency in a right-to-left single pass. At position 0,

the model does not need to enforce arc-consistency further back, so we can add tc0n time

to apply constraints at position 0. Thus the third step will take O(tc0n +
∑L−1

i=1 (tcin + n2)).

Finally, the fourth step will take O(n2) time to normalize each emission matrix Ẽ(i) and

another O(n2) time to normalize each transition matrix M̃ (i). The prior vector M̃ (0) can be

processed in linear time O(n). Therefore, the fourth step will take n +
∑L−1

i=1 (2n2) time or

O(n +
∑L−1

i=1 (n2)) time. Thus, the time to train the constrained hidden Markov model is as

follows:

O(n2) + O(tc0n +
L−1∑
i=1

(tcin + n2)) + O(n +
L−1∑
i=1

(n2))

= O(tc0n +
L−1∑
i=1

(tcin + n2)).

Now the time to generate from the constrained hidden Markov model is a simple random

walk on the matrices from left-to-right. Thus the time to generate will be the length of the

sequence multiplied by number of possible transitions (alphabet size). Therefore, the time to

generate is as follows:

O(Ln)

6.5.2 Experimental Validation

The experimental results shown in Figure 6.2 and Figure 6.3 support the theoretical time

complexities. The model for the experimental results was trained using an arbitrary problem

of numeric tokens that allowed for an increasing alphabet size. We can see that for an

increasing alphabet size n that the time to train the model increases as a quadratic function

72

Figure 6.2: Experimental results that show the performance of CHiMP as a function of the
size of the alphabet n. The solid line is the time to create (train) the model and shows the
performance to be a quadratic function of n. The dashed line grows linearly with n.

of n. This corresponds to the n2 term in the theoretical running time to train the model. In

the same graph, we see that the time to generate one sequence grows linearly with n which

corresponds to the theoretical running time to generate (O(Ln)). As we increase the sequence

length L the experimental running time to train the model and generate sequences both grow

linearly, which again corresponds to the theoretical running times proven in this paper.

Note that there is a simplified time complexity to train the model if we relax our

upper bound slightly. If we ignore that the first position requires less processing time, we can

relax the upper bound to get the following time to train the model:

O(L(tcin + n2)).

Ignoring constraints with non-trivial running times, the model’s time complexity can

be described as quadratic to train and linear to generate in terms of n. Thus the model is

73

Figure 6.3: Experimental results that show the performance of CHiMP as a function of the
length of the sequence L. The time to create (train) the model and generate a sequence both
grow linearly with L.

efficient enough to be suitable for real-time applications such as assisting in real-time music

composition. This is one of the constrained hidden Markov model’s largest strengths over

models such as neural networks which can require specialized hardware and hours of training

time.

6.6 Results for Natural Language Sequence Generation

In demonstrating the improvements of CHiMP over CoMP, we devised a natural language

task to generate sequences in which the first letter of each word begins with the same letter

(i.e., a tongue-twister). The models were trained on works of fiction from the COCA dataset

[16]. The task was chosen as it provides an even distribution of constraints while remaining

general enough to adapt to varying lengths. Results are averaged over the 26 English alphabet

letters. Note that the task constraints only affect the emission probabilities for CHiMP.

74

Figure 6.4: The effects of training corpus size on generalizability of the CHiMP (blue) and
CoMP (red) models. Generalizability is measured as number of unique sequences out of 100k
sampled solutions. Each model is constrained such that words start with the same letter,
and counts are averaged over 26 runs (a different letter constraint for each run). Shades show
the effects of varying the sequence length (and consequently the number of constraints) on
generalizability. The CHiMP model consistently generates more unique satisfying solutions
than the CoMP model and is relatively immune to the effects of training set size or number
of constraints.

In Figure 6.4, we can see the effects of training corpus size on the number of unique

sequences generated. CHiMP is able to generate thousands of unique sequences even the

training corpus is small (25 sentences) whereas CoMP is unable to generate sequences with a

small training corpus. The trend of unique sentence increases as the training set increases

until reaching the maximum number of sampled solutions (100K). CoMP’s ability to generate

novel and unique sentences is severely limited according to the size of its training set.

In Figure 6.5, we see the effects of increasing the sequence length on the number of

total solutions found by each model, i.e., the number of possible sequences that could be

generated by each model. As the sentence length increases the constraints become more

numerous due to the nature of our devised task. Since the transition matrices for CHiMP

are not affected by the constraints in this task, we see an exponential increase in the total

solutions for CHiMP whereas CoMP stagnates due to the restricting constraints. Attempts

75

Figure 6.5: The effects of sequence length on the number of total solutions generated by each
model with a fixed training set size of 300 sentences. Both models are constrained such that
each word in a sequence starts with the same letter; counts of total solutions are averaged
over 26 runs (each run using a different letter from the English alphabet). We see that as
the sequence length increases, total solutions for the CHiMP model increases exponentially
(given the logarithmic scale) whereas the CoMP model stagnates.

were made to apply the anticipation-RNN to this task; however, the model was unable to

generate sequences that satisfied the constraints.

6.7 Results for Musical Sequence Generation

To demonstrate the quality of generated sequences, CHiMP was trained to generate four-part

musical sequences in the style of J.S. Bach chorale harmonizations where the beginning and

end of the sequence is constrained to match with the beginning and end of the first five

measures of “Wer nur den lieben Gott läßt walten”. An example of a generated sequence is

shown in Figure 6.6. The generate sequences were then rated via a survey on how cohesive

or natural-sounding they are. The same generative task is evaluated for CoMP and the

anticipation-RNN. The dataset of chorale harmonizations used to train the models is available

in the music21 python package [15]. In training the Markovian models CoMP and CHiMP,

only pieces in a minor key are selected and then pieces are transposed into the key of C. In

total, 174 chorales are used to train the two models. Having all the music in C minor is

76

Figure 6.6: An example of a sequence generated by CHiMP with four note voices in the
style of a Johann Sebastian Bach chorale. Green notes indicate the set of constraints used to
generate the sequence. The constraints are to exactly match the beginning and end of the
first five measures of “Wer nur den lieben Gott läßt walten”.

intended to give the models a better chance of generating more cohesive sequences. If the

dataset included chorales with differing keys, then generated sequences could allow transitions

between notes in different keys which could create a jarring musical sequence.

From the 174 Bach pieces, the soprano, alto, tenor, and bass parts (or voices) are

extracted into sequences. The polyphonic sequences are encoded using a method called

melodico-rhythmic encoding [24]. In the encoding, time is quantized into 16th note intervals

where each beat in the music is divided into four equal parts. For each time slice, the token

is a four-tuple where each position in the tuple is for each of the four voices. The name of

the note is used if the note is played at that time slice, otherwise a new symbol “ ” is used

to indicate that the current note or rest is held.

For CHiMP, the soprano part of the time slice (melody) is used as the transition

(hidden) states. The other three parts of the time slice (harmony) are used as the emissive

(observed) states. A value from one to four is included in each emissive state that indicates

the beat of the time slice. CoMP does not have separate transition and emissive states and

transitions on states that include all four parts of the time slice as well as a beat indicator.

77

Figure 6.7: Survey results using Amazon’s Mechanical Turks service yielded 2,400 responses
(600 per model) and are visualized in a Likert chart. Participants were asked to rate a 12-
second musical phrase on how cohesive (natural-sounding) the phrase sounds. The responses
one to five correspond to: “very poor - Completely uncohesive music”, “poor - mostly
uncohesive music”, “fair - equally cohesive and uncohesive music”, “good - mostly cohesive
music”, and “excellent - completely cohesive music”. For CHiMP trained with a Markov order
of three, 73% of responses were four or five and only 4% of responses rated the music poorly
on cohesiveness (one or two). The music phrases generated by CHiMP with Markov orders
of three and six are rated similarly to CoMP whereas the phrases from the anticipation-RNN
are rated slightly lower on cohesiveness.

The anticipation-RNN is trained in a similar way using the music21 dataset as outlined

by Hadjeres and Nielsen [24]. In order to apply the anticipation-RNN to generate a musical

sequence with four parts, some modifications to the implementation2 were required.

An IRB approved survey was facilitated by Amazon’s Mechanical Turk service where

participants were asked to listen to the generated sequences and rate the cohesiveness of

the musical phrase. The rating for cohesiveness ranges on an ordinal scale from one to five

2https://github.com/Ghadjeres/Anticipation-RNN

78

Table 6.1: Mann-Whitney U test p-values for cohesiveness survey result groups.

CHiMP-Order3 CHiMP-Order6 Anticipation-RNN

CoMP-Order3 0.9774 0.2141 0.06142
CHiMP-Order3 - 0.2244 0.06369
CHiMP-Order6 - - 0.4957

corresponding to the following labels: “very poor - Completely uncohesive music”, “poor -

mostly uncohesive music”, “fair - equally cohesive and uncohesive music”, “good - mostly

cohesive music”, and “excellent - completely cohesive music”. For the survey, five sequences

are generated for each model: CoMP with a Markov order of three, CHiMP with a Markov

order of three, CHiMP with a Markov order of six, and the anticipation-RNN.

The survey results on sequence cohesiveness are shown in Figure 6.7. The 2,400

total ratings are overall positive with around 70% of responses being “good” or “excellent”.

Running a Mann–Whitney U test to test for statistical significance between the CoMP-

Order3 and CHiMP-Order3 groups yields a high p-value of 0.9774 indicating insufficient

evidence for the alternative hypothesis. Thus there is insufficient evidence that the difference

in cohesiveness ratings for the two groups is statistically significant. Table 6.1 shows the

Mann-Whitney U test p-values between the other model groups. There is insufficient evidence

of a significant difference between any of the model groups.

The results indicate that the abstraction introduced in CHiMP does not significantly

deteriorate the quality of generate sequences for the domain of music. The generated sequences

and survey data are available online3.

6.8 Conclusion

We have proposed an efficient method for constructing a hidden Markov process with control

constraints. The constrained hidden Markov process improves on the non-hidden model

by introducing a layer of abstraction that allows for greater solution space sizes and, in

3https://github.com/po-gl/MSThesis

79

turn, more complex constraints. Like with CoMP, CHiMP uses a random walk approach

to generation and does not rely on search; thus the model is appropriate for real-time or

interactive applications. Through arc-consistency, the model is able to solve the zero-frequency

problem typical of random walk approaches. The model also retains the original probabilities

of the training data within a constant factor.

In a natural language task, CHiMP remains expressive for restrictive constraints when

compared to CoMP, demonstrating a high level of generalizability. In a music generation

task, survey results provide evidence that CHiMP maintains sequence cohesiveness compared

to CoMP and the anticipation-RNN. The qualitative results dispel concerns of deteriorating

sequence quality caused by the abstraction in CHiMP. Thus CHiMP solves the problem of

diminishing solution space sizes while maintaining sequence cohesiveness. Future work will

investigate whether the model can maintain sequence cohesiveness for domains other than

music.

80

Chapter 7

Conclusion

We have presented a novel method for constructing a model that is an improved

solution to the problem of imposing structure onto generated sequences. The model has been

demonstrated to be able to adhere to control constraints while maintaining a much larger

solution space for restrictive constraints compared to previous solutions (e.g., CoMP).

In Chapter 3, we present a paper that demonstrates that constrained Markov processes

(CoMPs) are well-suited to the task of constrained sequence generation. Chapter 4 formalizes

the problem of diminishing solution space sizes that affect the CoMP model. CHiMP overcomes

the problem of diminishing solution space sizes through its hidden states, introducing an

element of abstraction. In the context of computational creativity, the larger solution space

positions CHiMP as a model that systems can utilize to progress them further ahead on

Ventura’s spectrum of creative systems [64]. Chapter 5 initially describes CHiMP and presents

results that demonstrate the enlarged solution space sizes. Finally, Chapter 6 fully describes

CHiMP.

We have demonstrated that the proposed method for constructing CHiMP retains the

desired properties of CoMP. In particular, the final model represents the same probability

distribution as the original training set within a constant factor. The model uses a simple

random walk approach to generating sequences and avoids the zero-frequency problem by

enforcing arc-consistency when constructing the model. In the domain of music sequence

generation, qualitative results suggest that sequence quality, as measured by sequence

cohesiveness, does not deteriorate with CHiMP. The training and generating time complexities

81

of CHiMP are proven to be efficient, making the model suitable for real-time, interactive

applications.

While CHiMP maintains its sequence cohesiveness in the domain of music sequence

generation, there is concern that the model does not maintain cohesiveness in other domains.

For instance, natural language poses a problem where a given part-of-speech (hidden state) can

be tens of thousands of different words (observed state), which leads to generated sentences

full of unrelated words. Future work may solve this problem with extended parts-of-speech.

Future work will also investigate the efficaciousness of CHiMP for other domains.

To summarize the contributions of CHiMP presented in this thesis, we leave the reader

with a metaphor where generating constrained sequences is akin to chiseling a marble block

to expose the sculpture already there. Chiseling off material from the marble block is like

adding constraints to the model. Adding strict or numerous constraints might chisel too

much material and destroy the sculpture, i.e., the solution space size becomes too small to

use. CHiMP, through its abstraction introduced by the hidden states, makes the marble

block larger. With CHiMP, we can chisel away more material (adding strict or numerous

constraints) and still have a sculpture (produce a usable solution space).

82

References

[1] Hussain-Abdulah Arjmand, Jesper Hohagen, Bryan Paton, and Nikki S. Rickard.

Emotional Responses to Music: Shifts in Frontal Brain Asymmetry Mark Periods

of Musical Change. Frontiers in Psychology, 8(DEC):2044, dec 2017. ISSN 1664-1078.

doi: 10.3389/fpsyg.2017.02044. URL http://journal.frontiersin.org/article/10.

3389/fpsyg.2017.02044/full.

[2] Gabriele Barbieri, François Pachet, Pierre Roy, and Mirko Degli Esposti. Markov

constraints for generating lyrics with style. In Ecai, volume 242, pages 115–120, 2012.

[3] Margaret A. Boden. The Creative Mind: Myths and Mechanisms, Second Edition.

Routledge, 2003. ISBN 0203508521. doi: 10.4324/9780203508527.

[4] Paul Bodily, Benjamin Bay, and Dan Ventura. Computational creativity via human-level

concept learning. In Proceedings of the Eighth International Conference on Computational

Creativity, pages 57–64, 2017.

[5] Paul M. Bodily, Porter Glines, and Brandon Biggs. “She Offered No Argument”:

Constrained Probabilistic Modeling for Mnemonic Device Generation. In Proceedings of

the 10th International Conference on Computational Creativity, pages 81–88, Charlotte,

North Carolina, 2019. Association for Computational Creativity.

[6] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation

and transcription. arXiv preprint arXiv:1206.6392, 2012.

[7] F. P. Brooks, A. L. Hopkins, P. G. Neumann, and W. V. Wright. An Experiment in

Musical Composition. IRE Transactions on Electronic Computers, EC-6(3):175–182,

1957. ISSN 03679950. doi: 10.1109/TEC.1957.5222016.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

83

http://journal.frontiersin.org/article/10.3389/fpsyg.2017.02044/full
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.02044/full

[9] Lee Cheatley, Wendy Moncur, and Alison Pease. Opportunities for computational

creativity in a therapeutic context. In 10th International Conference on Computational

Creativity, pages 341–345. Association for Computational Creativity, 2019.

[10] John G Cleary and William J Teahan. Experiments on the zero frequency problem. In

Proc. Data Compression Conference, volume 480, 1995.

[11] Simon Colton. Creativity Versus the Perception of Creativity in Computational Systems.

Proceedings of the AAAI Spring Symposium on Creative Systems, 2008.

[12] Simon Colton and Geraint A. Wiggins. Computational creativity: The final frontier?

In Proceedings of the Twentieth European Conference on Artificial Intelligence, pages

21–26. IOS Press, 2012. ISBN 9781614990970. doi: 10.3233/978-1-61499-098-7-21. URL

http://www.idi.ntnu.no/~agnar/Documents/Colton_Wiggins12.pdf.

[13] Darrell Conklin. Music generation from statistical models. In Proceedings of the AISB

2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, pages

30–35. Citeseer, 2003.

[14] Mihály Cśıkszentmihályi. Flow and the Psychology of Discovery and Invention. Harper

Perennial, 1996. ISBN 0060928204. doi: 10.1037/e586602011-001.

[15] Michael Scott Cuthbert and Christopher Ariza. Music21: A toolkit for computer-aided

musicology and symbolic music data. In J. Stephen Downie and Remco C. Veltkamp,

editors, ISMIR, pages 637–642. International Society for Music Information Retrieval,

2010. ISBN 978-90-393-53813. URL http://dblp.uni-trier.de/db/conf/ismir/

ismir2010.html#CuthbertA10.

[16] Mark Davies. The 385+ million word Corpus of Contemporary American English (1990–

2008+): Design, architecture, and linguistic insights. International Journal of Corpus

Linguistics, 14(2):159–190, 2009.

[17] Nina Dethlefs and Heriberto Cuayáhuitl. Hierarchical reinforcement learning and hidden

markov models for task-oriented natural language generation. In Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies, pages 654–659, 2011.

[18] Shlomo Dubnov, Gerard Assayag, Olivier Lartillot, and Gill Bejerano. Using machine-

learning methods for musical style modeling. Computer, 36(10):73–80, 2003.

84

http://www.idi.ntnu.no/~agnar/Documents/Colton_Wiggins12.pdf
http://dblp.uni-trier.de/db/conf/ismir/ismir2010.html#CuthbertA10
http://dblp.uni-trier.de/db/conf/ismir/ismir2010.html#CuthbertA10

[19] Douglas Eck and Juergen Schmidhuber. A first look at music composition using lstm

recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 103:

48, 2002.

[20] Brendan J Frey, Frank R Kschischang, Hans-Andrea Loeliger, and Niclas Wiberg.

Factor graphs and algorithms. In Proceedings of the Annual Allerton Conference on

Communication Control and Computing, volume 35, pages 666–680. Citeseer, 1997.

[21] Porter Glines, Brandon Biggs, and Paul M. Bodily. A leap of creativity: From systems

that generalize to systems that filter. In Kazjon Grace, Michael Cook, Dan Ventura,

and Mary Lou Maher, editors, Proceedings of the 11th International Conference on

Computational Creativity, pages 297–302. Association for Computational Creativity,

2020.

[22] Porter Glines, Brandon Biggs, and Paul Bodily. Probabilistic generation of sequences

under constraints. In Proceedings of the First Intermountain Engineering, Technology,

and Computing Conference, in press.

[23] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[24] Gaëtan Hadjeres and Frank Nielsen. Anticipation-rnn: Enforcing unary constraints in

sequence generation, with application to interactive music generation. Neural Computing

and Applications, pages 1–11, 2018.

[25] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model

for bach chorales generation. In International Conference on Machine Learning, pages

1362–1371. PMLR, 2017.

[26] Todd R Haskell and Maryellen C MacDonald. Constituent structure and linear order in

language production: evidence from subject-verb agreement. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 31(5):891, 2005.

[27] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup. Pro-

cedural content generation for games: A survey. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM), 9(1):1–22, 2013.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

85

[29] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient

flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[30] Anna Jordanous. Four PPPPerspectives on computational creativity in theory and in

practice. Connection Science, 28(2):194–216, 2016. doi: 10.1080/09540091.2016.1151860.

[31] Leonard Koren. Which ”aesthetics” do you mean? : Ten definitions. Imperfect

Publishing, Point Reyes, California, 2010.

[32] Leo Leppänen, Myriam Munezero, Mark Granroth-Wilding, and Hannu Toivonen. Data-

driven news generation for automated journalism. In Proceedings of the 10th International

Conference on Natural Language Generation, pages 188–197, 2017.

[33] H-A Loeliger. An introduction to factor graphs. IEEE Signal Processing Magazine, 21

(1):28–41, 2004.

[34] Alan K Mackworth. Consistency in networks of relations. Artificial intelligence, 8(1):

99–118, 1977.

[35] Richard G Morris, Scott H Burton, Paul M Bodily, and Dan Ventura. Soup Over

Bean of Pure Joy : Culinary ruminations of an artificial chef. In Proceedings

of the Third International Conference on Computational Creativity, pages 119–125,

2012. ISBN 9781905254668. URL http://computationalcreativity.net/iccc2012/

wp-content/uploads/2012/05/119-Morris.pdf.

[36] Aran Nayebi and Matt Vitelli. GRUV: Algorithmic Music Generation using Recurrent

Neural Networks. Deep Learning for Natural Language Processing, 2015.

[37] David Norton, Derrall Heath, and Dan Ventura. Finding creativity in an artificial artist.

Journal of Creative Behavior, 2013. ISSN 00220175. doi: 10.1002/jocb.27.

[38] Joseph C. Nunes, Andrea Ordanini, and Francesca Valsesia. The power of repetition:

Repetitive lyrics in a song increase processing fluency and drive market success. Journal

of Consumer Psychology, 25(2):187–199, 2014. ISSN 10577408. doi: 10.1016/j.jcps.2014.

12.004.

[39] Kyo-Joong Oh, Dongkun Lee, Byungsoo Ko, and Ho-Jin Choi. A chatbot for psychiatric

counseling in mental healthcare service based on emotional dialogue analysis and sentence

generation. In 2017 18th IEEE International Conference on Mobile Data Management

(MDM), pages 371–375. IEEE, 2017.

86

http://computationalcreativity.net/iccc2012/wp-content/uploads/2012/05/119-Morris.pdf
http://computationalcreativity.net/iccc2012/wp-content/uploads/2012/05/119-Morris.pdf

[40] Balder Onarheim and Michael Mose Biskjaer. Balancing constraints and the sweet spot as

coming topics for creativity research. In Creativity in design: Understanding, capturing,

supporting. APA, 2017. URL http://orbit.dtu.dk/files/103339029/Balancing_

Constraints_and_the_Sweet_Spot.pdf.

[41] François Pachet. The continuator: Musical interaction with style. Journal of New

Music Research, 32(3):333–341, 2003. doi: 10.1076/jnmr.32.3.333.16861. URL https:

//www.tandfonline.com/doi/abs/10.1076/jnmr.32.3.333.16861.

[42] François Pachet, Pierre Roy, and Gabriele Barbieri. Finite-length markov processes with

constraints. In Twenty-Second International Joint Conference on Artificial Intelligence,

2011.

[43] Alexandre Papadopoulos and Pierre Roy. Avoiding plagiarism in Markov sequence gen-

eration. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,

pages 2731–2737, 2014. URL www.aaai.org.

[44] Alexandre Papadopoulos, Pierre Roy, and François Pachet. Avoiding plagiarism in

markov sequence generation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 28, pages 2731–2737, 2014.

[45] Alexandre Papadopoulos, François Pachet, Pierre Roy, and Jason Sakellariou. Exact

sampling for regular and markov constraints with belief propagation. In International

Conference on Principles and Practice of Constraint Programming, pages 341–350.

Springer, 2015.

[46] Barak A Pearlmutter. Learning state space trajectories in recurrent neural networks.

Neural Computation, 1(2):263–269, 1989.

[47] Alison Pease, Markus Guhe, and Alan Smaill. Some aspects of analogical reasoning

in mathematical creativity. In Proceedings of the First International Conference on

Computational Creativity, pages 60–64, 2010.

[48] Guillaume Perez and Jean-Charles Régin. Mdds: Sampling and probability constraints.

In International Conference on Principles and Practice of Constraint Programming,

pages 226–242. Springer, 2017.

[49] Rafael Pérez y Pérez and Mike Sharples. Three computer-based models of storytelling:

BRUTUS, MINSTREL and MEXICA. Knowledge-Based Systems, 2004. ISSN 09507051.

doi: 10.1016/S0950-7051(03)00048-0.

87

http://orbit.dtu.dk/files/103339029/Balancing_Constraints_and_the_Sweet_Spot.pdf
http://orbit.dtu.dk/files/103339029/Balancing_Constraints_and_the_Sweet_Spot.pdf
https://www.tandfonline.com/doi/abs/10.1076/jnmr.32.3.333.16861
https://www.tandfonline.com/doi/abs/10.1076/jnmr.32.3.333.16861
www.aaai.org

[50] Julie Porteous and Marc Cavazza. Controlling narrative generation with planning

trajectories: the role of constraints. In Joint International Conference on Interactive

Digital Storytelling, pages 234–245. Springer, 2009.

[51] L. R. Rabiner and B. H. Juang. An Introduction to Hidden Markov Models. IEEE

ASSP Magazine, 3(1):4–16, 1986. ISSN 07407467. doi: 10.1109/MASSP.1986.1165342.

[52] Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models.

ieee assp magazine, 3(1):4–16, 1986.

[53] Graeme Ritchie. Some empirical criteria for attributing creativity to a computer

program. Minds and Machines, 17(1):67–99, 2007. ISSN 09246495. doi: 10.

1007/s11023-007-9066-2. URL https://link.springer.com/content/pdf/10.1007%

2Fs11023-007-9066-2.pdf.

[54] Stéphane Rivaud and François Pachet. Sampling Markov models under constraints:

Complexity results for binary equalities and grammar membership. arXiv preprint, 2017.

URL https://arxiv.org/pdf/1711.10436.pdf.

[55] Pierre Roy and François Pachet. Enforcing meter in finite-length markov sequences. In

Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[56] Pierre Roy, Guillaume Perez, Jean-Charles Régin, Alexandre Papadopoulos, François

Pachet, and Marco Marchini. Enforcing Structure on Temporal Sequences: The Allen Con-

straint. In Proceedings of the International Conference on Principles and Practice of Con-

straint Programming, pages 786–801. Springer, 2016. doi: 10.1007/978-3-319-44953-1{\ }
49. URL https://www.researchgate.net/publication/304490456.

[57] Warren S. Sarle. Neural networks and statistical models, 1994.

[58] Rob Saunders and John S Gero. The Digital Clockwork Muse: A Computational Model

of Aesthetic Evolution. In Proceedings of the Artificial Intelligence and Simulation of

Behavior Convention, pages 12–21, 2001. URL https://pdfs.semanticscholar.org/

420b/9355610e47a21398024ff3b423d66a002717.pdf.

[59] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

transactions on Signal Processing, 45(11):2673–2681, 1997.

[60] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The recurrent temporal

restricted boltzmann machine. In Advances in neural information processing systems,

pages 1601–1608, 2009.

88

https://link.springer.com/content/pdf/10.1007%2Fs11023-007-9066-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs11023-007-9066-2.pdf
https://arxiv.org/pdf/1711.10436.pdf
https://www.researchgate.net/publication/304490456
https://pdfs.semanticscholar.org/420b/9355610e47a21398024ff3b423d66a002717.pdf
https://pdfs.semanticscholar.org/420b/9355610e47a21398024ff3b423d66a002717.pdf

[61] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent

neural networks. In ICML, 2011.

[62] Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi Yamagishi, and

Keiichiro Oura. Speech synthesis based on hidden Markov models. Proceedings of the

IEEE, 101(5):1234–1252, 2013. ISSN 00189219. doi: 10.1109/JPROC.2013.2251852.

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008, 2017.

[64] Dan Ventura. Mere Generation: Essential Barometer or Dated Concept. Pro-

ceedings of the Seventh International Conference on Computational Creativity,

ICCC, pages 22–29, 2016. URL https://pdfs.semanticscholar.org/51eb/

ae710bf2c884b6c0b1479085604554fc9da4.pdf.

[65] Dan Ventura. How to Build a CC System. In Proceedings of the

Eighth International Conference on Computational Creativity, pages 253–260,

2017. URL http://computationalcreativity.net/iccc2017/ICCC_17_accepted_

submissions/ICCC-17_paper_20.pdf.

[66] Geraint A. Wiggins. A preliminary framework for description, analysis and comparison

of creative systems. Knowledge-Based Systems, 19(7):449–458, 2006. doi: 10.1016/j.

knosys.2006.04.009.

[67] Byung-Jun Yoon. Hidden markov models and their applications in biological sequence

analysis. Current genomics, 10(6):402–415, 2009.

89

https://pdfs.semanticscholar.org/51eb/ae710bf2c884b6c0b1479085604554fc9da4.pdf
https://pdfs.semanticscholar.org/51eb/ae710bf2c884b6c0b1479085604554fc9da4.pdf
http://computationalcreativity.net/iccc2017/ICCC_17_accepted_submissions/ICCC-17_paper_20.pdf
http://computationalcreativity.net/iccc2017/ICCC_17_accepted_submissions/ICCC-17_paper_20.pdf

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Related Work
	2.1 Broad Research Area Overview
	2.2 Constrained Models Research-Related Work

	3 ``She Offered No Argument'': Constrained Probabilistic Modeling for Mnemonic Device Generation
	3.1 Abstract
	3.2 Introduction
	3.3 Parallels Between Computational Creativity and Constrained Probabilistic Modeling
	3.3.1 Quality Assurance

	3.4 Non-Homogeneous Markov Models
	3.5 NhMMonic
	3.6 Methods
	3.7 Results
	3.8 Discussion
	3.9 Acknowledgements

	4 A Leap of Creativity: From Systems that Generalize to Systems that Filter
	4.1 Introduction
	4.2 Methods
	4.3 Results
	4.4 Discussion and Conclusion

	5 Probabilistic Generation of Sequences Under Constraints
	5.1 Introduction
	5.2 Related Work
	5.3 Methods
	5.4 Applications
	5.5 Conclusion

	6 Constrained Hidden Markov Processes for Sequence Generation
	6.1 Introduction
	6.2 Related Works
	6.3 Problem Statement
	6.4 Construction of the Constrained Model H~
	6.4.1 Extract Matrices from H
	6.4.2 Applying Constraints
	6.4.3 Enforcing Arc-consistency
	6.4.4 Normalization
	6.4.5 Proof of Properties (I) and (II)

	6.5 Time complexity
	6.5.1 Proof
	6.5.2 Experimental Validation

	6.6 Results for Natural Language Sequence Generation
	6.7 Results for Musical Sequence Generation
	6.8 Conclusion

	7 Conclusion
	References

